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Abstract 
 
In this thesis, a detailed and comprehensive study is presented on the Universal Mobile 

Telecommunications System (UMTS) network planning problem. This problem has been 

shown to be NP-hard. Therefore, approximate algorithms are necessary to build planning 

tools. Three planning tools, based respectively on genetic algorithm, simulated annealing 

and a novel cooperative method, are designed and implemented to solve the global 

planning problem of UMTS networks.   

Using the optimal solutions as references, numerical results are compared amongst 

the proposed planning tools and a previously designed tool based on tabu search. The 

cooperative method shows its superiority over the three other planning tools with 90 

percent confidence that the true mean solution gap from the optima is within the interval 

of [0.01%, 0.33%]. Moreover, this solution closeness to optima is not necessarily 

accompanied with long computation time. These observations make the cooperative 

method more appropriate for global planning of UMTS networks. 
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Chapter 1               

 
Introduction        
 

Nowadays, the Universal Mobile Telecommunications System (UMTS) takes a very 

important role in the wireless communication market. To offer a high-quality network and 

stay ahead of the competition, network operators need to invest a large portion of their 

budget in their network infrastructures. Network planning is then the key to reach a 

delicate balance between network investment and performance in order to maximize the 

return on investment (ROI).  

The primary task of the overall network planning process is the topology planning, 

which describes the network infrastructure and the required initial investment. Since the 

planning of UMTS networks involves many tunable variables, efficient planning tools are 

essential for a successful network planning. 

In this thesis, we are interested in the global planning of UMTS networks, focusing 

on the development of efficient automatic planning tools based on approximate 

algorithms for the deployment of new UMTS networks. This first chapter starts by 

presenting some background information that will be useful for the remaining chapters. 

Then, the problem statement is exposed followed by the research objectives and the 

proposed methodology. Finally, the main contributions of this thesis are outlined and we 
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conclude with an overview of the remaining chapters.  

 

1.1 Background 
In this section, we will introduce some concepts that will be useful to better understand 

the remaining chapters. We will first describe the cellular network evolution and the 

network planning process. Then, different planning techniques will be exposed. 
 

1.1.1 Evolution of Cellular Networks 
The cellular network industry has evolved phenomenally in the past few decades: 

transmission technologies changed from analog to digital; various data services gained a 

rapid growth to compliment the original single voice service; data transmission speed 

rose tremendously; and network coverage increased from being national to being 

international. People can now get regular phone and multimedia services without the 

constraint of wires from landline networks. With these changes, cellular network 

operators are now facing the challenges of the rapid growth of regular voice services, as 

well as the fast expansion of wireless internet based multimedia services. This pushes fast 

evolution of technologies, as well as the demand for more efficient networks. 

As cellular networks evolve, the term ‘generation’ is used to differentiate significant 

technology improvements. In fact, we saw the first generation (1G) of cellular networks 

in the early 80’s followed by the second generation (2G) in the early 90’s. A few years 

later, the third generation (3G) was launched. To date, researchers are already focusing on 

the fourth generation (4G). 

 

1.1.1.1 1G Cellular Networks 

1G networks, started in the 1980s, brought out the boom of the mobile communication 
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development. The cell technology was used in 1G networks to provide radio signal 

coverage and to enable users to move from one cell to another. Because of this, 1G 

networks were also called cellular networks. With analog transmission techniques, 1G 

networks could only provide limited services, such as voice and voice related services. 

Standards like Nordic Mobile Telephone (NMT) used in Nordic countries and Eastern 

Europe and Advanced Mobile Phone System (AMPS) used in the United States are 

examples of 1G standards. User mobility was very limited due to standard incompatibility. 

In fact, there was no concept of worldwide wireless communications, nor a coordination 

of worldwide technical standards. Mobile users could not roam like users do nowadays. 

At the same time, in standards like AMPS, each phone call occupied a separate radio 

frequency during the call even when there was no conversation in process. This caused a 

waste of the spectrum utilization, especially with the rapid growth of mobile users. 

 

1.1.1.2  2G Cellular Networks 

The increasing needs of the mobility in wireless communication require more network 

compatibility. 2G networks, using digital signal transmission technologies, are built to 

realize global compatibility with better services. Compression and multiplexing 

technologies are applied on the digital signals to enhance spectrum utilization efficiency 

and increase the network capacity. In addition to voice and voice related services, 2G 

networks also provide mobile users with data services, such as short message service 

(SMS).  

Based on signal multiplexing techniques, 2G standards are divided into two groups:  

Time Division Multiple Access (TDMA) based standards, such as Global System for 

Mobile Communications (GSM), and Code Division Multiple Access (CDMA) based 

standards, like CDMA. These digital signal transmission technologies greatly increase the 

network capacity with the same available spectrum as in 1G networks.  
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The GSM standard was originally created by European Conference of Postal and 

Telecommunications Administrations (ECPT) in 1982. Later, GSM responsibility was 

transferred to the European Telecommunications Standards Institute (ETSI). GSM 

networks were commercially launched in 1991, operating at either the 900MHz or 

1800MHz spectrum. It is the most popular standard of mobile phone services, accounting 

for the major part of the global wireless communication market. The popularity of the 

GSM standard also makes the global roaming feasible between different mobile network 

operators with roaming agreements. The CDMA standard, which is the competitor of 

GSM, was pioneered by Qualcomm. It is also called CDMA IS-95 (Interim Standard 95).  

2G networks provide non-differentiated voice and data services in the circuit 

switched manner, which delivers excellent voice services and low transmission rate data 

services. However, 2G networks still do not fulfill the standard unification globally. 

 

1.1.1.3  2.5G Cellular Networks  

2.5G networks are a transition step between 2G and 3G networks. They enable faster data 

transmission for 2G phones. Besides the circuit switched core network, 2.5G networks 

have also implemented a packet switched core network. By such upgrades, 2.5G 

networks provide partial benefits of 3G networks, such as higher data transmission speed 

than 2G networks. The General Packet Radio Service (GPRS), with up to 180.4Kbps data 

transmission speed in the downlink direction, is an example of 2.5G networks for GSM 

operators. While CDMA2000 1xRTT (1 times Radio Transmission Technology) is an 

example of 2.5G CDMA networks, which provides up to 307.2Kbps downlink data 

transmission rate. 
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1.1.1.4  3G Cellular Networks 

The growing needs for wireless internet access require a universal standard for wireless 

communications. Comparing with 2G networks, which mainly provide voice services, 3G 

networks are expected to support higher speed data services with rates up to 2Mbps. 

There are two main standards in 3G networks: UMTS/W-CDMA (Wideband Code 

Division Multiple Access) and CDMA2000. 

UMTS networks, based on GSM, are the European version of 3G networks. 

W-CDMA standard is taken in the air interface, using a pair of 5MHz bandwidth carriers. 

The first national customer UMTS network was launched in 2002. The CDMA2000 

standard, based on CDMA IS-95, is the American 3G variant. It is evolving to support 

new services in a standard 1.25MHz bandwidth.  

Both W-CDMA and CDMA2000 use coding schemes to differentiate users and base 

stations. However, these two standards are still incompatible. There are several reasons 

for this incompatibility. The most significant one, as stated previously, is that W-CDMA 

takes a pair of 5MHz bandwidth carriers, while CDMA2000 occupies a pair of 1.25MHz 

carriers. CDMA2000 3x, the evolution of CDMA2000, will take three pairs of 1.25MHz 

bandwidth carriers and construct a super channel structure.  

Since GSM is, by far, the most popular 2G standard, UMTS are expected to get the 

biggest market share as they are backward compatible with GSM networks. Therefore, 

this thesis will focus on developing automatic planning tools for UMTS networks. Figure 

1.1 summarizes the cellular network evolution from 2G to 3G. 
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Figure 1.1: The cellular network evolution 

 

From the network infrastructure point of view, UMTS networks are composed of 

two parts: the Radio Access Network (RAN), also called the Universal Terrestrial Radio 

Access Network (UTRAN), and the Core Network (CN). The RAN, which is based on 

the W-CDMA technology, is composed of node Bs (node for Broadband access) and 

Radio Network Controllers (RNC). Node B, formerly known as base station in 2G 

networks, houses the radio transceiver and provides the interface between the radio link 

and the network itself. The RNC, previously known as Base Station Controller (BSC) in 

2G networks, provides connectivity between node Bs and the core network. It is also 

responsible for the call and mobility management and takes the full charge of radio 

resource management without involving the core network signaling. The CN includes 

two domains: a circuit-switched (CS) domain and a packet-switched (PS) domain. On 

one side, the CS deals with real-time traffic, like voice, and provides connectivity to the 

Public Switched Telephone Network (PSTN). On the other side, the PS handles other 

types of traffic, such as time non-sensitive services, and ultimately provides a connection 

to the public IP network. The CN definitions are based on the 2G/2.5G network 

specifications. In fact, the CN makes use of the existing GPRS infrastructure, such as the 

Mobile Switching Center (MSC), the Gateway MSC (GMSC), the Home Location 
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Register (HLR) and the Visitor Location Register (VLR) for the CS domain, and the 

Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node (GGSN) for 

the PS domain. There is a network element, called Media Gateway (MGw), which is as 

an intermediate node to provide connectivity between the access network and the core 

network. A typical UMTS network infrastructure is provided in Figure 1.2. 

 

Node B

Node B

Node B

GGSNGGSNSGSNSGSN

HLR
/
VLR

GMSCGMSCMSCMSCRNCRNC

RNCRNC InternetInternet

PSTNPSTN

Node B PS Domain

CS Domain

RAN CN

Node B

Node B

 

Figure 1.2: A typical UMTS network architecture [14] 

 

1.1.1.5  3.5G/4G Cellular Networks 

Starting from 2006, many countries began to upgrade their UMTS networks with High 

Speed Downlink Packet Access (HSDPA), in order to enhance downlink data 

transmission speeds up to 7.2Mbps. Further speed increases were achieved by using 

Evolved High Speed Packet Access (HSPA+), in which the data transmission speed could 

reach up to 42Mbps. In the uplink direction, the High-Speed Uplink Packet Access 
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(HSUPA) can be applied to improve data transmission speeds. These techniques are 

usually called 3.5G. 

The 4G standard has not yet been defined. It is characterized as ubiquitous, mobile, 

and broadband [1]. The overall objective for 4G networks is to build an All-IP network. 

This will enable all existing different wireless technologies to have a common platform to 

communicate with each other. With guaranteed quality and security, the 4G networks are 

expected to support speeds of 100Mbps to 1Gbps for wireless multimedia services. Using 

the UMTS networks as an example, the fundamental difference between 3G networks and 

4G networks is that the function of RNCs in 3G networks is taken by node Bs, a set of 

servers and gateways. The investment in the 4G network infrastructure is supposed to be 

less, while the data transmission speed goes higher.  

 

1.1.2 Network Planning Process 
Network planning is an iterative process composed of three main steps as shown in 

Figure 1.3. 

 

 

Figure 1.3: The network planning process [2] 
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 Define the network requirement: The network requirement need to be defined before 

planning the network. This is one of the most time-consuming step which includes 

the clarification of traffic requirements, such as the traffic type, volume and 

distribution; the equipment (network nodes and links) costs; the network design 

parameters, such as technology specific requirements; the operational and utilization 

constraints, and so on. For an existing network, these requirements can be collected. 

However, for a completely new network, the unavailable data (such as the traffic 

distribution) have to be predicted or generated. 

 Network design process: This process involves exploring as many solutions as 

possible to decide the node placement, the link connection, the node and link sizing, 

as well as the traffic routing. Usually, due to the large number of possible 

combinations, this task cannot be done manually. As a result, different planning tools 

are developed and applied to help the network planners to make their decisions. A 

network topology will be developed as the primary output of this process. 

 Network performance analysis: Once the overall network topology has been 

developed, it will then be evaluated according to certain criteria such as cost, 

reliability, the network coverage, and capacity, etc. A good solution will be useful for 

further network configuration refinements (fine tuning) either manually or by using 

additional techniques.  

The above three-step process can be repeated by changing the input information or 

using different planning techniques to produce alternative network topologies. The one 

with the best performance can be selected as the final solution. 

 

1.1.3 Network Planning Techniques 
In the early stages, network planning was solved manually. However, since network 

planning involves several tunable parameters and a huge amount of computations, 
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manual processes obviously limited efficiency and are prone to errors. Over the past 

several decades, with the development of computer hardware and software, automatic 

planning tools were developed in order to improve network planning accuracy and 

efficiency. Automatic planning tools make use of a technique, called algorithm, to 

perform those tedious work previously done manually. An algorithm is a well-defined 

procedure for solving a problem in a finite number of steps [2]. After building a model, 

represented by objectives, variables and constraints for characterizing the problem, the 

algorithm follows predefined procedures to solve the problem using the representation in 

the model. 

Developing an efficient network planning tool, based on the algorithms, is an 

ongoing concern amongst network planning researchers. There are many choices of 

algorithms, where two main branches are generally classified: exact algorithms and 

approximate algorithms. 

 

1.1.3.1  Exact Algorithms 

Exact algorithms search all potential solutions in the search space to obtain an optimum 

solution for the problem. Constraints of the problem help to discard those infeasible 

solutions. However, when the solution space is very large, exact algorithms will take too 

much time for finding a solution, which makes them inefficient for large size problems. 

In fact, for some problems, the CPU time may increase exponentially with respect to the 

problem size. Moreover, even the computer memory may be insufficient. Linear 

programming (LP) and integer programming (IP) are examples of exact algorithms. 

Please refer to [3] for more details about exact algorithms. 
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1.1.3.2 Approximate Algorithms   

Approximate algorithms, also called heuristics, aim to provide relatively “good” solutions 

in reasonable amount of computation time. Basically, it is a tradeoff between solution 

quality and execution time. According to their needs, network planners can adjust the 

parameters in approximate algorithms to make them focus on either finding better 

solutions or finding faster solutions. There is a general class of approximate algorithms, 

called meta-heuristics (please refer to [4] for detailed information on meta-heuristics), 

which are usually used to solve combinatorial optimization problems. A combinatorial 

optimization problem is a minimization/maximization problem with three elements: a set 

of instances; a finite set of candidate solutions for each instance; and a cost function [5].  

Before introducing the approximate algorithms, several concepts need to be 

clarified: 

•  NP-hard problems: problems that can not be solved with an exact solution in 

polynomial time; 

•  Neighborhood: a set of solutions obtained by applying a move or a 

transformation to the current solution; 

•  Global optimum vs. local optimum: let X be the set of variable x, where ∈x X. 

The global optimum minimizes/maximizes )(xf over all ∈x X, while the local 

optimum is better than all solutions in its neighborhood as shown in Figure 1.4.  
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Figure 1.4: Global optimum vs. local optimum 

 

The following four approximate algorithms are commonly used to solve network 

planning problems. 

 Greedy Algorithm  

A greedy algorithm is governed by the following rule: always find the local optimum in 

the neighborhood of the current solution. As such, the greedy algorithm can also be 

defined as a local search (LS) procedure. At each iteration, the greedy algorithm makes 

greedy choice and keeps reducing the solution set into a smaller one. It usually commits 

to certain choices too early to search the entire solution space. Typically, the greedy 

algorithm fails to find the global optimum. Examples of greedy algorithms include 

Kruskal and Prim algorithms (for finding the minimum spanning tree) and Dijkstra’s 

algorithm (for finding the shortest path).  

As stated above, the characteristic of the iterative improvement of the greedy 

algorithm makes it easily being trapped into local optimum. Different methods have been 

proposed to try to solve this problem, such as applying the greedy algorithm multiple 

times with different initial solutions and then choosing the best result as the final 

optimum. However, the proposed methods still do not guarantee to find the global 

optimum. As the problem size increases, especially for NP-hard problems, the greedy 

algorithm becomes even less feasible. Nevertheless, greedy algorithms are proven to be 

useful for finding a “good” solution as an initial solution for further improvement 



13 

methods [6]. A group of approximate algorithms is proposed in order to overcome the 

drawbacks of greedy algorithms in this thesis.  

 Tabu Search  

The tabu search, denoted as TS, is derived from the best improvement local search, 

aiming to find the global optimum. The tabu search uses the local search to iteratively 

move from the current solution to a better one within its neighborhood. By allowing the 

temporary solution degradation, tabu search avoids the search process being trapped into 

the local optima. Two mechanisms, short term memory and long term memory, can be 

used to keep track of attributes of solutions previously visited and guide the search 

direction. The short-term memory contains a tabu list and the aspiration criteria. A tabu 

list is a storage space for solutions being recently visited. In order to avoid cycling, 

solutions in the tabu list are prevented to be revisited for a time period. This time period, 

determined by the tabu size, defines how long a solution will be a member of tabu list. At 

the same time, the aspiration criteria works to avoid missing good solutions in the tabu 

list and to make them available for the search. Tabu search may also make use of a 

long-term memory, which operates when there is no solution improvement for a given 

number of iterations. To avoid some solutions/moves being selected more frequently than 

the others, the occurrence frequency of solutions will be memorized in the long-term 

memory. Solutions with occurrence frequency over a certain threshold will be penalized. 

Tabu search may make use of one or both of these two memories to finally find a good 

solution within an acceptable computation time. For more detailed information on tabu 

search, please see [4] and [7]. 

 Simulated Annealing  

Simulated annealing, denoted as SA, simulates the physical annealing process, which 

starts from a high enough temperature T (the analog to a control parameter) and then the 

temperature decreases according to a cooling schedule. During cooling process, which 
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makes reference to the solution search process, solution transforms from current state to a 

random new state in its neighborhood at every temperature T. New state selection is done 

according to a certain probability, which allows temporary solution deterioration in order 

to avoid the final solution being trapped into the local optimum. The control parameter, T, 

guides the problem to its final state. If the temperature decreases too fast, the solution 

will be trapped into the local optimum with higher cost function value. On the other hand, 

if the temperature decreases too slowly, it will take too much time for finding the final 

solution, which greatly decreases the algorithm efficiency. A well designed cooling 

schedule for the temperature is the key to make the simulated annealing successfully find 

the global optimum. For more information about SA, please refer to [4] and [8]. 

 Genetic Algorithm  

The genetic algorithm, also known as GA, is a class of evolutionary algorithms based on 

Darwin theory of natural selection. The main idea of the algorithm is to start with an 

initial population. Then, some individuals from the population (called parents) are 

selected in order to generate new individuals (also referred to as offspring). The choice of 

the parents is based on the fitness of the individuals, which is evaluated by the objective 

function. The higher the level of the fitness, the higher the probability that the individual 

will be selected to produce offspring. Offspring are generated by applying different 

recombination operators, such as crossover or mutation (or both). The new generated 

offspring will then be integrated into the current population to create a new generation. 

The whole process stops when some predefined conditions (such as the maximum 

number of generations) are reached. As we can see, this process favors the ”mating” of 

the more fit individuals and allows exploration of the promising area in the search space. 

Please refer to [9] and [10] for more detailed information about the genetic algorithm.  

Tabu search, simulated annealing and genetic algorithm are common examples of 

meta-heuristics. More details about these algorithms will be given in Chapter 3. After 
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having presented the background information, we will now look at the problems that 

could occur when planning UMTS networks. 

 

1.2 Problem Statement  
The primary goal of the UMTS network planning is to generate an optimum topology for 

the network. To a great extent, it is decided by the node location selection. For a normal 

cellular network, there is a huge amount of nodes to be installed. At the same time, a 

great number of factors have to be taken into consideration for choosing proper node 

locations, such as traffic distribution, network node features, network management issues, 

and so on. Geographical factors also play an important role for node location selection in 

wireless communication networks.  

Many models and algorithms have been proposed to solve the UMTS network 

planning problem. However, due to the problem complexity, most of them only focus on 

a portion of the overall network. In fact, the whole planning problem is usually 

decomposed into three subproblems: the cell planning subproblem, the access network 

planning subproblem and the core network planning subproblem. Each of them has 

already been proven to be NP-hard [11, 12, 13].  

In order to find a solution for the whole UMTS network, these three subproblems 

need to be solved sequentially. Unfortunately, such an approach doesn’t consider the 

interconnections between the subproblems. In fact, the combination of the solution of 

each subproblem may provide a local optimum. In other words, combining partial 

solutions in order to obtain a solution to the global planning problem may provide 

suboptimal solutions, rather than the optimal solution.  

A different way of solving the planning problem of UMTS networks is to use a 

global approach, where the three subproblems are solved simultaneously. Since all 

interconnections among the subproblems are taken into consideration, a global approach 
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has the advantage of providing the global optimum.  

A mathematical programming model has been proposed for the global planning 

problem of UMTS networks [14]. However, due to the complexity of the global planning 

problem, it cannot be solved within a reasonable amount of time by a commercial solver, 

such as CPLEX [15]. Approximate algorithms, aiming to provide relatively “good” 

solutions in reasonable amount of computation time, are more suitable to build planning 

tools. In fact, they are a tradeoff between solution quality and execution time. 

Furthermore, the efficiency of the planning tool is problem dependent. A local 

search algorithm and a tabu search algorithm have already been proposed in [14] and [16] 

for solving the global planning of UMTS networks. However, besides these two 

algorithms, other approximate algorithms, such as genetic algorithm and simulated 

annealing, have been widely and successfully implemented for solving network planning 

problems. For example, in [23], the simulated annealing was proposed to solve the 

UMTS site selection problem, while in [25] the genetic algorithm was used to solve the 

base station positioning problem. In [37], the performance of the simulated annealing, the 

genetic algorithm and another approximate algorithm were compared when solving the 

UMTS base station location planning problem. Therefore, it is interesting to investigate 

how they will perform on the global planning of UMTS networks. Moreover, combining two 

algorithms may also provide interesting results since different algorithms have different strength. 

Based on the problem statement, we will now formulate the research objectives in 

the following subsection. 

 

1.3 Research Objectives   

The main objective of this thesis is to develop efficient automatic planning tools based on 

different meta-heuristics to solve the global planning problem of UMTS networks. More 

specifically, we will address the following topics:  
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•  Develop a first automatic planning tool based on the genetic algorithm; 

•  Evaluate the performance of the previous planning tool by comparing its solution 

with the optimal solution; 

•  Propose a second planning tool based on simulated annealing; 

•  Evaluate the performance of the second planning tool by comparing its solution 

with the optimal solution; 

•  Design a third planning tool based on a combination of tabu search and genetic 

algorithm; 

•  Evaluate the performance of the third planning tool by comparing its solution 

with the optimal solution; 

•  Compare the three previous planning tools with results obtained from the tabu 

search algorithm. 

 

1.4 Methodology 
UMTS network planning can initially be viewed as a very involved task since a large 

number of variables are tunable in both the UMTS network and the automatic planning 

tool. In order to achieve the objectives stated in the previous section, we will firstly make 

a thorough study on each heuristic. To simplify the planning process, a step by step 

approach is proposed in Figure 1.5. 

 Study meta-heuristics: The UMTS network planning problem is a NP-hard 

combinatorial optimization problem. In this phase, two meta-heuristics, the genetic 

algorithm and simulated annealing, are selected for study because of their capability 

to solve this kind of problem.  

 Algorithm implementation: C/C++ will be used to implement the planning tools. 

Three planning tools are proposed to solve the global UMTS network planning 

problem. The first one is based on the genetic algorithm, while the second one is 



18 

using the simulated annealing and the third planning tool is a combination of tabu 

search and genetic algorithm. The components in the algorithms are well-designed 

aiming to find the best solution for this specific planning problem. A series of tests 

are made in order to work out the optimal parameter settings. 

 Solution comparison with the optimal solution: In order to find the optimal solutions, 

a commercial solver called CPLEX will be used. The solutions obtained from 

CPLEX will be applied to evaluate the quality of the solutions obtained from the 

genetic algorithm, the simulated annealing and the cooperation of the tabu search and 

the genetic algorithm respectively in terms of the objective function value and the 

CPU time. 

 Solution comparison with tabu search: Using the optimal solution as the reference, 

the solution obtained from the three algorithms will be compared with the tabu 

search in order to find out the most efficient planning tool. 
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Figure1.5: The proposed methodology 

 

1.5 Main Contributions 
The main contributions of this thesis can be summarized as follows:  

 A detailed study/analysis on the genetic algorithm. A first automatic planning tool is 

built based on the genetic algorithm and the performance evaluation is made with the 

reference of the optimal solution; 

 A detailed study/analysis on the simulated annealing. A second automatic planning 

tool is developed based on the simulated annealing and the performance evaluation is 

made with respect to the optimal solution;  

 A third automatic planning tool is proposed based on the cooperation of the genetic 
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algorithm and the tabu search. Performance evaluation is made with the reference of 

the optimal solution;. 

 A comparative study is made amongst the different algorithms in order to analyze the 

advantages and disadvantages of each of them to make better use of the 

meta-heuristic in solving the global planning problem of UMTS networks. 

 

1.6 Thesis Overview 
The remainder of this thesis is organized as follows: Chapter 2 presents a selective review 

on the UMTS network planning problem. The three subproblems are explained in details 

in this Chapter as well as the two approaches commonly used to solve the problem. Then, 

Chapter 3 provides a brief description of the mathematical model used to represent the 

global planning problem. Different meta-heuristics (genetic algorithm, simulated 

annealing, tabu search and a combination) are also studied and implemented to build 

planning tools for solving the global UMTS network planning problem. The simulation 

results and analysis are presented in Chapter 4, where the solution quality and the CPU 

time are compared with respect to CPLEX. Finally, conclusions are drawn in Chapter 5. 
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Chapter 2              

 
Related Work on the UMTS Network Planning 
         

UMTS network planning has recently been a subject of great interest. It is a complex but 

necessary step towards building an efficient network. Typically, a planned area is divided 

into cells, where each cell is covered by a node B through radio interface. Then, node Bs 

are connected to RNCs to construct the access network. Through such connections, 

mobile traffic is sent to the network to get corresponding services. After that, a group of 

RNCs is connected to a MSC/SGSN in a core network. Based on the service type, the 

traffic, after being served, is further transmitted to external networks. In this case, a 

“bottom-up” approach is an efficient network planning hierarchy. Therefore, the planning 

of UMTS network can be divided into three planning areas [18, 19]:  

•  The cell planning for mobile terminals and node Bs; 

•  The access network planning for node Bs and RNCs; 

•  The core network planning for RNCs and core network elements. 

The following sections will cover all three planning areas of UMTS networks in 

terms of the different tools, methods and algorithms proposed so far.  
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2.1  Sequential Approach  
Solving the UMTS network topology planning problem is very complex. A popular way 

to simplify the planning complexity is to decompose the problem into subproblems by 

using, for example, a sequential approach. When using such an approach, three planning 

subproblems are defined: the cell planning subproblem, the access network planning 

subproblem and the core network planning subproblem. These three subproblems are 

solved step by step to finally solve the whole planning problem as shown in Figure 2.1. 

Besides the input to each subproblem itself, the output of the previous step turns out to be 

the input for the next step, until the whole network problem is solved.  

 

 
Figure 2.1: The sequential approach for UMTS network planning  

 

Each subproblem has been extensively researched in previous studies. They will be 

explained in details in the following subsections. 

 

2.1.1  Cell Planning 

Cell planning is a process to connect all mobile terminals through the air interface that 

node Bs provide, as shown in Figure 2.2. As mentioned previously, UMTS networks 

deploy the W-CDMA technique in the air interface. All mobile connections in a UMTS 

network share the same frequency bandwidth. This makes simultaneous mobile 

connections in the neighborhood the main cause for the noise level at the receiver of 

mobile terminals. The coverage of a node B is not decided solely by the signal strength 

level. In fact, traffic distribution, power control mechanism, transmission power limits 
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and quality constraints may all be considered for the coverage prediction of a node B [11]. 

Furthermore, link direction has to be decided before the cell planning stage: the network 

planner must choose to focus on uplink direction (from mobiles to node Bs), downlink 

direction (from node Bs to mobiles) or both. Uplink direction is suitable for predicted 

symmetric traffic, such as voice services. However, if the network is predicted to provide 

more data services, such as web-browsing, where downloading is more prevalent than 

uploading [20], downlink direction would be more appropriate for the consideration. The 

studies on the fulfillment of cell planning with uplink direction, downlink direction and 

both directions are shown in references [11, 21, 22] respectively. 
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Figure 2.2: The scope of the cell planning 

 

2.1.1.1 Cell Planning Objectives 

From the operator point of view, the minimum investment with the best performance and 
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long-term profitability is the ultimate goal for the network planning. For the cell planning, 

this can be targeted into several objectives:  

•  Minimizing the network cost; 

•  Maximizing the coverage; 

•  Maximizing the capacity; 

•  Maximizing the signal quality; 

•  Minimizing electromagnetic field levels. 

As we can see, the above criteria might be contradictory with one another. For 

example, to maximize the coverage, the network planner may need to deploy extra node 

Bs, thus increasing the network cost. In UMTS networks, all mobile terminals share the 

same frequency bandwidth. It makes the UMTS network a self-interference network. The 

coverage and capacity can be antagonistic to each other too.  

The above concerns bring out a multi-objective planning strategy. Previous studies 

proposed two ways to represent a multi-objective function. One way was to use a linear 

combination of different objective criteria [23, 24, 25] to form a single objective function, 

where different objectives were given a certain weight between 0 and 1. In the second 

method, the problem was formulated by a set of decision variables (parameter 

space/vector) and a set of objective functions (objective vectors). These objective 

functions could be any of the above stated objective criteria [23, 24]. When there was no 

solution that could improve one objective criterion without degrading the other objective 

criteria, it could be said that the optimum solution was found. This method is referred to 

the Pareto optimal solution. The objective functions in the set can also be assigned with a 

weight correspondingly, known as weighting objectives, which is similar to the first 

method. The weighted multi-objective functions give more flexibility to the network 

planner by assigning higher (lower) weight to put more (less) emphasis on a given 

objective. 
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Besides the objectives that have been stated at the beginning of this section, some 

other objective criteria were also proposed to evaluate the solution quality. In [24], a 

downlink UMTS omni-cell planning problem was studied. Wu et al. built a model aiming 

to maximize the transmission power, antenna height, and the assignment between mobile 

terminals and node Bs. A combinatorial objective function was formulated with three 

sections: minimizing the total cost of node Bs, minimizing the total emitted power by 

active mobile terminals, and maximizing the total number of active connections. Two 

constant weight parameters were applied on the second and third objective criteria. The 

interference from inside and outside the cell, the maximum required power of mobile 

terminals in a given cell and Signal-to-Interference Ratio (SIR) threshold at mobile 

terminals were considered in the constraint set. Crainic et al. [17] dealt with cell planning 

from the electromagnetic (EM) field level point of view. With the goal of minimizing EM 

field level, the radio protection constraints, handover and downlink capacity constraints 

were taken into considerations. Five objective functions, scaling five electrical field 

levels, were formulated to model the field level as well as explore different solution 

spaces. 

 

2.1.1.2 Cell Planning Input 

To solve cell planning problem, the following information is required as input [18, 28]: 

traffic modeling; node B potential location information; node B model specification; and 

node B coverage/propagation prediction. 

 Traffic modeling    

Mobile traffic distribution is a decision factor for the network topology planning. Since 

the UMTS network provides both voice and data services, traffic distribution should be 

differentiated based on the service type. 

Several traffic models were studied in this subsection based on different design 
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requirements. For the purpose of determining a network topology, traffic intensity model 

is preferred [29]. In this model, mobile terminals were represented by the amount of 

traffic (traffic intensity) requested from a given area during a fixed time interval, where 

they were clustered or agglomerated to simplify the traffic description instead of 

representing every single mobile terminal. These agglomerations were called traffic 

nodes (TN) [30] or test points (TP) [28] for the purpose of measurement, such as signal 

strength, quality of service, capacity requirement, and so on. 

Classification of the area to be planned will also be done at this stage. It decides 

what kind of area the planning will work on: dense urban, urban, suburban, rural, and so 

on [19].  

 Node B potential location information  

Potential locations where node Bs can be installed need to be defined. In theory, node Bs 

can be installed anywhere. However, constraints like geographical issues may make it not 

possible in practice. Some locations are naturally good choices as potential sites, such as 

the top of a building. However, some other locations cannot be installed with node Bs 

because of, for example, block from other high-rise buildings. As a result, a discrete set 

of possible locations should be provided. 

Usually, the number of potential sites is more than the actual needed number of node 

Bs. In [24], the potential sites were randomly generated with the uniform distribution 

with a certain probability. In [19], the probability of whether a sub-traffic area would be 

installed with a base station was decided by four factors: traffic density, building height, 

terrain height and if there was a GSM site in the area. The bigger the probability is, the 

more chance the base station would be installed in the analyzed area.  

 Node B model specification 

A series of parameters/features of available node B models need to be specified at this 

stage [6]. One of the most important factors is the antenna type. Shall a directed or an 
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omni-directional antenna be used? Antenna type decides the signal radiation degree, 

which is then affecting the interference scope. Typical parameters that need to be 

considered include the following: antenna height, tilt, azimuth, transmission power, 

sensitivity, switch fabric capacity and the cost. 

 Node B coverage/propagation prediction  

The coverage/propagation prediction can be used to approximately estimate the number 

of node Bs needed in a given area. In W-CDMA, since radio frequencies are shared by all 

node Bs [31, 32], it is not enough to predict the coverage simply based on the signal level. 

Traffic distribution, signal quality (usually measured by SIR) and power control also need 

to be taken into considerations [28].  

Gould [33] described some challenges that radio network design engineers would 

face when planning urban areas. When dealing with radio frequencies, many aspects, 

such as signal propagation, attenuation and interference must be considered. Signal 

propagation parameters can be obtained using actual measurement, which is very 

complex. That is why different models have been developed in the literature. From 

experimental results and statistical data, Okumura [34] developed several practical charts 

in order to predict signal propagation. Later, on the basis of Okumura curves, Hata [35] 

proposed an empirical formulation for propagation loss. This model, called the Hata 

model, is widely used in telecommunications networks. Other models such as COST 231 

[36], extended the model proposed by Hata to the upper frequency band (1500 MHz≤ f ≤ 

2000 MHz).  

As mentioned previously, the W-CDMA technique in the UMTS network air 

interface constrains interference for mobile terminals mainly from the neighborhood 

mobiles sharing the same frequency bandwidth. The transmission power of the mobile 

terminal is limited. If far away from the node B and surrounded by the high level 

interference, the mobile terminal may not be able to get the minimum acceptable SIR 
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[28]. That is, cell coverage is heavily affected by the traffic distribution and interference. 

On one side, a cell can cover a large number of users if they are relatively close to the 

node B. On the other side, the cell will only be able to cover a few users if they are 

located far away from the node B. This phenomenon makes reference to the cell 

breathing effect. As shown in Figure 2.3, the cell breathing effect can be defined as the 

constant change in the coverage area with respect to the amount of traffic. When a cell 

becomes overloaded, the interference will increase and therefore, the cell size will 

decrease. Users that are excluded from a cell will usually be redirected to neighborhood 

cells. It is important to keep the transmission power of the node Bs and mobile terminals 

at the minimum levels while ensuring adequate quality at the receiver [37]. Serious power 

control mechanism has been adopted in the UMTS network. References [20, 21, 28, 38] 

provide detailed studies of power control for the UMTS cell planning.  

 

Coverage area

 

Figure 2.3: Cell breathing effect 
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2.1.1.3 Cell Planning Output 

Following a “bottom-up” planning scheme, cell planning is the first step in order to 

connect subscriber traffic to the UMTS network, as shown in Figure 2.2. The general idea 

behind the cell planning problem is to cover all mobile terminals in a given region with 

the minimum number of node Bs. More precisely, the cell planning problem usually deals 

with one (or more) of the following item(s): 

•  The optimal number of node Bs; 

•  The best locations to install node Bs; 

•  The types (or models) of node Bs; 

•  The configurations (height, orientation, tilt, power, etc.) of node Bs; 

•  The assignment of mobile terminals to node Bs. 

 

2.1.1.4  Cell Planning Tools  

The cell planning problem has been proven to be NP-hard [28]. As a result, most 

planning tools are based on approximate algorithms. 

Downlink omni-cell planning task solved by greedy algorithm, tabu search and 

simulated annealing were presented in [24]. The result showed that the tabu search had 

the best performance. In [39], the problem of locating node Bs was studied. Greedy 

algorithm, genetic algorithm and a combination algorithm for total optimization (CAT) 

were proposed to solve the problem, where CAT was superior in terms of the computation 

time and solution quality. An integer programming formulation was proposed in [40] to 

solve the node B placement problem in the uplink direction. Randomized greedy, reverse 

greedy heuristics and the combined randomized add and remove algorithm were applied 

to the cell planning problem. For medium to large size problems, randomized add and 

remove algorithm showed its capability to find good solutions with an acceptable amount 
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of computation time. Taking into account of fast power control, soft handover, and pilot 

signal power, a model was built for node B location selection with the consideration of 

both uplink and downlink direction [37],. In their paper, the simulated annealing, 

evolutionary simulated annealing, genetic algorithm and greedy search were compared in 

terms of the computation time and solution quality as a reference for heuristic selection. 

In [41], on the basis of greedy algorithm search result, tabu search was used to optimize 

the node B location and configuration problem in an uplink direction model. The genetic 

algorithm, simulated annealing, tabu search and greedy algorithm were compared in [42] 

for node B location selection. The power control, soft-handover (SHO) and common pilot 

channel (CPICH) power were considered in the model. Tabu search demonstrated its 

superiority in finding a good quality solution within reasonable computation time. 

Different from only using one meta-heuristics, Crainic et al. [17] proposed to 

cooperate two meta-heuristics, tabu search and genetic algorithm, in parallel to fulfill the 

task of automatic planning. The model was designed to solve not only node Bs’ location 

and emission power but also the antenna height, tilt and orientation. It was proven that 

the tabu search was good at deep search of solution space but with relative small 

configuration parameters. The genetic algorithm could explore the whole set of the 

configuration parameters but with high computing cost. In the proposed method, the tabu 

search worked independently on different parts of the solution spaces with different 

objectives. The result from the tabu search would then be combined together as the initial 

solution of the genetic algorithm. The result from GA would then further increase the TS 

diversification. The result proved that this cooperative method was able to deal with the 

high volume of configuration parameters to get an accurate planning.  

Once we have the location and configuration of node Bs, the next step is the access 

network planning. The output of the cell planning will be treated as the input for the 

access network planning, along with some other input information. 
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2.1.2  Access Network Planning  
The access network is used to concentrate connections and trunk them to the upper level 

core network [43], as shown in Figure 2.4.  
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Figure 2.4: The scope of the access network planning 

 

2.1.2.1  Access Network Planning Objectives 

Currently, the objective of the access network planning focuses on two aspects: the 

cost-based planning and the reliability-based planning.  

 Cost-based planning objective 

In [18], the equipment cost was composed of the RNC cost and the access concentrator 

cost, represented as a stepwise function with respect to the expected traffic. The link cost 

consisted of links between different node Bs, from RNCs to node Bs, from RNCs to core 

networks nodes, as well as links between different RNCs for signaling messages and 
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handover traffic. The total link cost was a piecewise linear function of link length and a 

stepwise function of expected traffic on the link. The access network cost was a tradeoff 

between the sum of the equipment cost and link cost. Apparently, using high capacity 

RNCs would decrease the total number of RNCs needed, however, at the cost of 

increasing the link usage. The goal of the access network topology planning was to find 

the minimal equipment and link cost while satisfying the traffic requirement.  

The RNC type was not differentiated in [43]. Their objective function included the 

cost of RNCs and links. The total cost of RNCs was calculated as a linear function of 

RNC number. The total link cost was a step-wise function with respect to the link 

capacity, with the consideration of inter-node B links, which were arbitrary in the model, 

and links between node Bs and RNCs.  

The handover, also called handoff, is the process where mobile terminals maintain 

communication with the system when moving from one coverage area to another one. 

Related studies appeared in [44, 45, 46, 47], where handover was differentiated into two 

types: simple handover (two cells connected to a same switch) and complex handover 

(two cells connected to two different switches). The decision-making process for 

handover type is done at RNC. It takes 10-80ms, which is roughly two times the 

air-interface capacity used by a mobile terminal under non-handover situation [20]. As we 

can see, the handover is an important aspect when planning the radio access network 

capacity. Thus, in [44, 45, 46, 47], when assigning cells to switches, the objective 

function consisted of not only link cost, but also a virtual cost generated by the handovers. 

In [44, 45, 46], the handover cost only included complex handovers and the cost of 

simple handover was neglected. However, in [47], the handover cost was defined as the 

cost from both simple and complex handovers. 

Wu et al. [48] built a model to find the RNC locations and assigned node Bs to 

RNCs. The objective function of their model contained hardware cost, including RNC 
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cost and link cost, as well as the handover cost. Only complex handovers were taken into 

consideration in this paper. 

 Reliability-based planning objective 

Besides building an access network with minimum cost, the reliability of a network is 

also an important aspect that needs to be considered by network planners. Different from 

wired networks, small failure in one part of the network may cause serious consequences 

on neighbor networks. In fact, mobile terminals that are disconnected from a network will 

try to re-connect to neighbor networks, thus increasing the target network load and 

degrading their performance or even getting the networks down.  

Since reliability comes with cost, network planners need to find a balance between 

network investment and reliability/survivability. Szlovencsak et al. studied this tradeoff 

by building a network with reasonable cost as well as an acceptable traffic loss. In the 

first phase of their two-phase method, the objective function was a linear combination of 

two types of cost [49]: structural cost (including RNC and node B cost as well as the link 

cost) and penalty cost (caused by a network failure). The parameters in the cost function 

could be adjusted to change the weight of reliability related penalty cost. Based on the 

topology obtained from the first phase, the second phase tried to add new link in order to 

increase reliability. The objective function of the second phase was composed of the cost, 

node availability, and new added link length to finally find the lower cost solution. The 

final result would match the required reliability with an acceptable cost.  

Charnsripinyo et al., in [50], also proposed a two-phase method to design a network 

topology with optimal cost. The first phase aimed to build a minimum cost network. The 

objective function only contained the cost generated by links. The second phase objective 

function consisted of the total cost of the new links needed to reach reliability 

requirement. 
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2.1.2.2  Access Network Planning Input 

A lot of information is needed in order to plan the access network. Typical input 

information can be summarized as follows: 

•  The physical location and type of the node Bs that are installed (can either be 

given or obtained by solving the cell planning subproblem); 

•  The traffic demand going through each node B (can either be given or obtained 

from the cell planning subproblem); 

•  The set of potential locations to install the RNCs; 

•  The different types/capacities of RNCs (this can include the number of ports, the 

switch fabric capacities, and so on); 

•  The different types/capacities of links available to connect the node Bs to the 

RNCs; 

•  The handover frequency between adjacent cells. 

Wu et al. mainly focused on the constraint-based optimization model for the access 

network design in [48, 51]. The limited traffic capacity and available ports of a RNC for 

connecting node Bs were specified as corresponding constraints to reduce the problem 

complexity. 

 

2.1.2.3  Access Network Planning Output  

Based on the cell planning result, the access network planning will work on clustering the 

node Bs into RNC areas [18, 19]. It will deal with one or more of the following aspects: 

•  The optimal number of RNCs; 

•  The best location to install the RNCs; 

•  The type (or model) of RNCs; 

•  The link topology and type between node Bs and RNCs; 
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•  The link topology and type between RNCs; 

•  The link topology and type between node Bs. 

 

2.1.2.4  Access Network Planning Tools 

Most of the time, a star or a tree topology will be selected to build an access network. In a 

star topology, all node Bs have their own link(s) directly connected to the RNC. A tree 

topology is implemented when a node B provides connectivity for other node Bs to the 

RNC. The topology built in [48] was a typical star topology. In their model, only link cost 

between node Bs and RNCs was considered. Also, there was no notion of degree 

constraint for the node Bs. More information about the star topology can be found in [14, 

51]. 

In [43], Harmatos et al. utilized simulated annealing and greedy algorithm to build a 

tree topology for the access network. The initial state (the number and locations of RNCs) 

was randomly generated for the given node Bs. The simulated annealing algorithm was 

used for finding the optimal state of the RNCs. Then, the greedy algorithm was applied 

for determining the access links from the RNCs to the node Bs to build a minimum cost 

tree. The tree construction was later proven to be the bottleneck of their planning 

algorithm. In a later work of Harmatos et al. [52], an access network was built for only 

one RNC using a new algorithm, which was closely related to the spanning tree problem. 

This new algorithm was said to be capable of solving those multi-constrained capacitated 

tree optimization problems with non-linear objective function. Afterward, Juttner et al. 

[13] improved this tree topology planning with a two-step method. Firstly, the overall 

UMTS access network was planned using a “global algorithm”, which was a combination 

of the simulated annealing and the b-matching algorithms. Then, a “local algorithm”, 

based on the branch-and-bound algorithm with Lagrangian lower bound, was applied to 

plan or improve the single tree in the trees obtained from the previous step. Test results 
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demonstrated further reduction of network cost. 

Lauther et al. [18] handled the access network topology planning as a clustering 

problem. Given the location of node Bs, they provided two methods to construct the 

cluster. The first method was based on the tree generation and cutting. Multidimensional 

binary search tree algorithm (or k-d tree) was applied to generate a proximity graph [3, 53, 

54]. This proximity graph was then calculated using Prim’s or Kruskal’s algorithm to find 

the minimum number of links needed to connect all nodes. Then linear tree partitioning 

algorithm, proposed by Kundu and Misra [55], was used to cut the tree into subtrees 

(clusters). RNCs were assumed to be located at the potential locations near the cluster 

center (based on the traffic distribution). The second method made use of Kruskal-like 

algorithm, starting by considering each node B as a cluster. At each iteration, two clusters 

were merged and it kept doing this merge as long as the total cost could be reduced 

during the merge. 

Providing network reliability is not a trivial issue in wireless communication, 

especially in 3G network, which is expected to support high-speed multimedia services 

with guaranteed quality of service (QoS). Network reliability/survivability need to be 

incorporated with the network infrastructure. It is known that a tree topology does not 

provide reliability in case of a failure. Szlovencsak et al. [49] proposed a two-phase 

method to build an economical and reliable network. The first phase was based on the 

minimum cost tree proposed in [43, 52], which was using the simulated annealing 

algorithm to modify (add or remove links while keeping tree topology) the trees 

considering the reliability issues. The first phase solution was good enough for the 

planning with less strict reliability requirement. The second phase would add redundant 

links between the node Bs to secure the weakest part of the network. Both greedy and 

randomized methods were proposed for this phase. The randomized method was finally 

preferred to select which node Bs would be connected.  
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Instead of using tree topology, Charnsripinyo and Tipper [50] proposed a two-phase 

method to build a mesh topology for access network, aiming to finding the minimal 

network cost, as well as satisfying QoS and survivability requirements. A shortest-path 

routing algorithm with link-cost metric was presented in both phases to minimize the 

routing cost. 

 

2.1.3  Core Network Planning 
The core network is the center of the whole network. It fulfills main functions of UMTS 

networks and provides access to external networks, as shown in Figure 2.5. In the core 

network, real time services, like voice, are routed to the PSTN, while high-speed data 

traffic is directed to the public IP networks. Besides traffic switching, the core network 

also provides QoS, mobility management, network security, and billing [56]. In the 

sequential approach, the core network planning is the final but not trivial step because of 

its nuclear position in the whole network. 
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Figure 2.5: The scope of the core network planning  

 

2.1.3.1  Core Network Planning Objectives 

The objective of core network planning is to build a cost-efficient network while 

respecting the QoS [56]. Not many studies have been dedicated done on the UMTS core 

network planning problem. This can be explained by the fact that this subproblem is 

similar to wired network planning problems. 

Harmatos [12] formulated the objective function with a linear combination of 

equipment and link costs. The equipment cost was composed of hardware cost, 

installation cost, and port/interface cost. It was applied for RNCs, MGws, and transport 

nodes, which represented core network nodes. Link cost included the cost of links 

between different RNCs, RNCs and MGws, MGws and transport nodes, as well as 

between different transport nodes. In the objective function, the link cost was represented 

by a step-wise function of link capacity and a piece-wise linear function of link length 
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between repeaters.  

Ricciato et al., working on GPRS network, focused on finding the optimal 

assignment of RNCs to SGSNs on the basis of measured data [57]. The objective was set 

to balance the number of RNCs per SGSN and minimize the inter-SGSN routing, which 

was represented by minimizing the peak number of RNCs that could be connected to 

SGSN, and minimizing the number of corresponding complex handovers. A parameter 

was used to tune the weight of these two objectives. 

 

2.1.3.2  Core Network Planning Input 

Based on the output of the access network planning (UTRAN topology and 

corresponding traffic distribution), the following inputs are used to plan the core network:  

•  The physical location of the RNCs (can be obtained from the access network 

planning or measured from real data); 

•  The traffic demand (volume and type) going through each RNC (can be obtained 

from the access network planning or measured from real data); 

•  The potential location of core network nodes; 

•  The different types/capacities of core network nodes; 

•  The different types/capacities of links available to connect RNCs to core network 

nodes. 

The location and the load of each RNC have a direct influence on the core network 

topology planning.  

 

2.1.3.3  Core Network Planning Output 

The core network planning mainly deals with the assignment of RNCs to MSCs/SGSNs. 

The output of the core network planning can be generalized with the following items: 
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•  The best location of nodes (MGw, MSC and SGSN etc.); 

•  The optimal number of nodes; 

•  The type/characteristic of nodes; 

•  The link topology and link type between RNCs (optional); 

•  The link topology and link type between RNCs and the core network nodes. 

 

2.1.3.4  Core Network Planning Tools 

Because of a greater routing diversity and reliability, a mesh topology will usually be 

used in the core network [58]. 

In [12], Harmatos divided the planning problem into two steps: based on a randomly 

generated initial solution, they first used the simulated annealing to decide the location of 

MGws, links between MGws and RNCs, as well as links between MGws and core 

network nodes. On the basis of the topology obtained from the first step, the second step 

aimed to find the optimal path for the traffic. In this step, the simulated annealing and 

simulated allocation (SAL), proposed by Pioro in [58], were applied and compared to 

find the cost optimal routing path for the required traffic. The result showed that the 

simulated annealing was good for small size problems, while SAL is superior for large 

size problems. 

Ricciato et al. [57] implemented an integer linear programming (ILP) model to solve 

the linear combination of two objective functions. They first obtained the optimal 

solutions for the primary objective. Then the solutions obtained from the first step, 

together with other original problem constraints, worked as the constraints to solve the 

secondary objective.   
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2.1.4  Sequential Approach Summarization 
As stated before, the goal of using a sequential approach to solve the UMTS network 

planning problem is to reduce the problem complexity. In fact, we end up with three 

different subproblems, where solving each one of them is easier than solving the whole 

problem. As a result, more details can be considered for each subproblem.  

The sequential approach also has drawbacks. The major disadvantage of this 

approach is that each subproblem is considered independently from one another, which 

easily leads the overall planning to a local optimum. Most of the time, the combination of 

subproblem optima does not provide an optimal solution to the global problem. Moreover, 

there is no integration strategies being developed yet to incorporate all partial solutions in 

order to obtain a global solution. Integration techniques are very difficult to be developed 

because we need to have a global view of the network. 

A different way of planning the UMTS network is to use a global (also called 

integrated) approach. 

 

2.2 Global Approach  
As mentioned previously, a sequential approach breaks down the whole network planning 

problem into three subproblems and solves them in sequence. A global approach, 

however, considers at least more than one subproblem simultaneously. Since 

interconnections between the subproblems are taken into consideration, the global 

approach has the advantage of providing solutions that are closer to the global optimum. 

In Figure 2.6, all three subproblems are considered simultaneously. As a result, the 

optimal solution can be obtained at the expense of computational complexity. As stated in 

section 1.2, all three subproblems are NP-hard. Consequently, the global planning 

problem of UMTS networks is also NP-hard. 
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Figure 2.6: The global approach for UMTS network planning  

 

The network planning objective in a global approach is more general than its 

counterparts in sequential approaches due to the fact that the global approach deals with 

two or three subproblems together. Existing studies mainly focus on minimizing the 

network cost, while satisfying network performance requirements. There are three 

research directions: the UTRAN planning, the access and core network planning, and the 

whole network (the cell, the access network and the core network) planning.  

Zhang et al. [19] proposed to use a global approach to solve the UTRAN planning 

problem, aiming to position node Bs and RNCs, decide the number of the nodes, and the 

link connections between them with the minimal network cost. 

Chamberland and Pierre [59] focused on GSM access and core network planning 

subproblems. With given locations of base stations, nodes of access network and core 

network were located, along with node types. The interconnections between the access 

network and the core network, as well as link types were also decided. They designed an 

automatic planning tool based on tabu search to find the minimum cost. With certain 

modifications, the network model and implemented algorithm proposed in this paper can 

also be applicable to the UMTS network. 

St-Hilaire et al. [14] developed a mathematical programming model for global 

planning of UMTS network in the uplink direction. Within an acceptable amount of time, 

a local search heuristic was implemented to find a good solution for the node location, 

link connections between network nodes, and the type of the network nodes and links. In 

their later work [16], a planning tool based on the tabu search is proposed to solve this 
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global planning problem with improved performances. 
 

2.3 Section Remarks 
The primary task of network planning is the topology planning, which demonstrates the 

network node placement and the link connection. A well designed network topology 

provides operators a proper investment budget on the network infrastructure and a good 

basis for further network configuration refinement.  

There are two main branches commonly applied on the UMTS network planning 

problems: the sequential approach and the global approach. In the sequential approach, 

the planning problem of the overall UMTS network is divided into three subproblems: 

the cell planning subproblem, the access network subproblem and the core network 

subproblem. Thus, the overall network planning problem is solved by tackling the three 

subproblems sequentially.  

Since each subproblem is relatively easier to solve than the whole network planning 

problem, the sequential approach can be time efficient. Moreover, more details can be 

considered in each subproblem. However, since each subproblem is considered 

independently, the combination of the optimal solution of each subproblem might not be 

able to construct an optimal solution for the overall network planning problem.  

A global approach consists of solving more than one subproblem simultaneously, 

where all interactions among the subproblems are taken into consideration. As a result, 

the global planning gains the advantage of finding solutions that are closer to the global 

optimum. If all three subproblems are considered simultaneously, the global optimal 

solutions can be obtained. However, since each subproblem has already been proved to 

be NP-hard, we can easily assume that the global planning problem is also NP-hard. In 

fact, the global approach becomes much more complex than the sequential approach due 

to the consideration of subproblem interactions. This urges the development of efficient 
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automatic planning tools to finally build a cost-effective network. 
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Chapter 3              

 
Network Model and Planning Tools 
 

As mentioned previously, meta-heuristics are usually used to solve combinatorial 

optimization problems. In this chapter, we will firstly describe the mathematical model 

for the global planning problem of UMTS networks. This model will be used to evaluate 

the quality of the proposed planning tools. Then, the next two subsections provide the 

detailed design strategy of the new planning tools based on genetic algorithm and 

simulated annealing respectively. A planning tool based on tabu search will also be 

briefly described in the following subsection for performance comparison purpose. 

Finally, a novel planning tool based on the cooperation between genetic algorithm and 

tabu search is designed in order to obtain better solution quality for the network planning 

problem. 

 

3.1 Exact Mathematical Model 
In the UMTS network topology planning problem, finding out the network topology 

while minimizing the cost is the ultimate goal. Several constraints are used to define the 

solution space (or guarantee the feasibility of potential solutions), which will be explored 
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during the search process of the implemented meta-heuristics. The model for the global 

planning problem has already been studied and proposed in [14]. However, for the sake 

of completeness, the model is summarized in Figure 3.1. It is only formulated in words 

for readability reasons. 

 

Objective function: min(                     )
Subject to:  
                  • Uniqueness constraints
                  • Assignment constraints
                  • Equipment capacity constraints
                  • Link capacity constraints 
                  • Traffic flow conservation constraints

 
Figure 3.1: The UMTS network planning model 

 

As we can see, the objective function is composed of two items: the cost of nodes 

( NC ) and the cost of links and interfaces ( LC ). These two items are represented by 

equations 3.1 and 3.2 respectively.  
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In these equations, S1, S2, S3 and S4 are respectively the set of potential sites to install 

the node Bs, the RNCs, the MSCs and the SGSNs. T1, T2, T3 and T4 are sets of node B 

types, RNC types, MSC types and SGSN types. Similarly, M12, M23 and M24 are 

respectively the set of link and interface types that can be used to connect node Bs to 

RNCs, RNCs to MSCs and RNCs to SGSNs. Variables a (a12, a23, a24) and b (b1, b2, b3, 
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b4) respectively represents the cost of a given link type between two locations and the 

cost of a given type of network equipment. Finally, v (v12, v23, v24) and x (x1, x2, x3, x4) are 

two decision variables. The first one corresponds to the number of links of a given type 

between two locations and the second one simply indicates if a piece of equipment of a 

given type is installed (or not) at a given location. 

As shown in Figure 3.1, the solution space is defined by a series of constraints. The 

uniqueness constraints limit the number of node that can be installed at each potential site 

to one. The assignment constraints state that each TP must be covered by one node B 

(while respecting the minimum receiving power and SIRmin), each node B must be 

connected to one RNC which must be linked to one MSC and one SGSN. The constraints 

for the equipment capacity guarantee that the total volume of outgoing traffic is smaller 

than the switch fabric capacity and the total number of outgoing links is smaller than the 

total number of available interfaces on the node. Link capacity constraints make sure that 

the total traffic on all the links between two locations is smaller than the total capacity of 

these links. Finally, the traffic flow constraints ensure that for each node installed, the 

total outgoing traffic will be equal to the total incoming traffic. For more details about the 

mathematical model and the mathematical formulations of the constraints, please refer to 

[14]. 

The previous mathematical model has been shown to be NP-hard. As a result, 

approximate algorithms are expected to build network planning tools. In the following 

subsections, planning tools based on genetic algorithm, simulated annealing, tabu search 

and a new cooperative method will be described. 

 

3.2 Planning Tool Based on Genetic Algorithm 
The genetic algorithm is a well-known meta-heuristic and is frequently used to solve 
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network planning problems [25, 26]. It is a class of evolutionary algorithm as it is an 

analogue of the natural selection from Darwin’s theory.  

The genetic algorithm starts the reproduction process by generating an initial 

population. This initial population represents a subset of possible solutions to a particular 

problem. Each individual in the population is then evaluated by the given objective/cost 

function to obtain a corresponding fitness. For maximization (minimization) objective 

function, the higher (lower) the objective function value is, the higher (higher) the 

individual fitness will be. The parent individual selection is based on the individual 

fitness. The higher the fitness level is, the higher the probability that the individual will 

be selected to reproduce. By applying different recombination operators such as 

crossover or mutation (or both), offspring are generated. This reproduction process shares 

some characteristics from both parent individuals. Finally, offspring will be integrated 

into the current population to create the next generation by either replacing the whole 

current population or part of it. This reproduction process favors the “mating” of the more 

fit individuals, such that the promising search areas are explored. With a good design, the 

genetic algorithm will usually converge to “acceptably good” solutions to the problem 

“acceptably quickly” [62]. The whole process stops when the predefined conditions are 

reached. There are several basic components in the genetic algorithm. The following 

subsections provide a close look at each of these components to find a good design 

scheme for the global UMTS network planning problem. 

 

3.2.1  Initial Population 
As mentioned previously, the initial population is a group of potential solutions for the 

problem. There are two factors that need to be taken into consideration for the initial 

population: the population generation and the population size. 
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3.2.1.1  Initial Population Generation 

The first step of applying the genetic algorithm on a particular problem is to decide the 

population representation scheme. There are two classes of encoding schemes: the binary 

encoding scheme and the non-binary encoding scheme. The choice of the encoding 

scheme depends on the problem. 

In the binary encoding scheme, the decision variable is represented by 0 or 1. For 

example, in the UMTS network planning problem, the binary code could be used to 

indicate if the corresponding site is installed with a network node or not. Figure 3.2 is an 

example of 0-1 binary encoding scheme, where 1 means the corresponding site is 

installed with a network node and l is the solution string length [63]. 

 

Column (site) 1 2 3 4 5 … l-1 l 

Bit string 0 1 1 0 1 … 0 1 

Figure 3.2: The binary encoding scheme 

 

However, in some other problems, it is not efficient or suitable to use the binary 

encoding scheme. For instance, in the UMTS network planning problem, different types 

of network nodes are available for each site. In face, we need to decide not only if a 

network node will be installed on a specific site, but also which node type will be 

selected. For example, if three types of nodes are available for each site, then the value 

for each site will be chosen from four defined values: 0, 1, 2, and 3 (0 means there is no 

piece of equipment installed). Figure 3.3 is a solution string example for a UMTS 

network with five potential node B sites, three potential RNC sites, two potential MSC 

sites, and two potential SGSN sites. 
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node Bs RNCs MSCs SGSNs 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .   .  .  .  .  . 

1 2 2 1 3 2 0 1 0 2 2 0 

node B 
type 1 

RNC 
type2  

MSC 
type0 
(not installed)  

SGSN 
type2  

Figure 3.3: A GA coding scheme for UMTS network planning 

 

Genetic algorithm is stochastic in nature [63]. For non-binary encoding, random 

values uniformly distributed between 0 and 3 must be generated. Once we have this 

structure, it is easy to evaluate the feasibility and the cost of a given solution.  

Some studies proposed to seed the genetic algorithm an initial population with 

known good solutions, which might be obtained from other heuristic methods. As a result, 

this would speed up the search and hopefully find a better solution. However, some other 

studies argued that this could lead to premature convergence with a poor solution [64, 

65]. 

 

3.2.1.2  Population Size 

After deciding an appropriate way to generate the initial population, the next step deals 

with the population size. A population is a group of potential solutions for the problem. 

On one side, if the population size is too small, the search space will not be sufficient and 

will lead the search to premature convergence. On the other side, if it is too big, the 

search will be inefficient and the solution will not be found within a reasonable 

computation time [66]. Choosing an appropriate population size is always a trade-off 

between solution quality and execution time.  

Intuitively, for a given solution string length, there should exist a corresponding 
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optimal population size. Goldberg [67] proposed in his early research work that the 

population size should increase as an exponential function of the string length. Some 

empirical results indicated that a population size of 30 is adequate in many cases [68, 69]. 

The later research work of Goldberg and his colleague showed the linear dependency 

relationship between the population size and solution string length [70].  

Based on the assumption that all values are presented in the initial population, 

Reeves [71] worked on finding the minimum size for a meaningful search, which meant 

that every point in the search space should be reachable from the initial population by 

crossover only. For binary strings, with string length of l, the minimum population size 

(N) can be expressed as: ⎡ ⎤2log/)ln/log(1 2
∗−+≈ PlN , where *

2P  takes the value of 

99.9%, which means that the calculated minimum population size N will provide the 

meaningful search with the probability of 99.9% [71]. For the non-binary / q-ary 

alphabets (q possible values for a position in a string, where q>2) encoding scheme, the 

derived expressions can be converted numerically into graphs for specified confidence 

levels. Figure 3.4 gives an example for 99.9% confidence level. 
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Figure 3.4: Solution string length vs. the minimal meaningful population size [71] 

 

After building the initial population, each solution string (individual) in the 
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population will be evaluated by the given objective functions (i.e. eq. 3.1 and 3.2) in 

order to find the fitness. Based on the fitness of each individual, the more fit individuals 

will be selected as parents to reproduce and finally form the next generation of 

population. 

 

3.2.2  Selection 
Genetic algorithm is a population-based search method [72]. The search process starts by 

selecting better individuals from the initial population according to the individual fitness 

and reproducing them to generate offspring. The offspring will be improved generation 

by generation in terms of fitness.  

During the iterative searching process, the selection plays a critical role as it 

determines the search direction. There are two factors that need to be considered during 

the selection process. The first one is the selection pressure, which is the degree that the 

better individuals are favored to. The second concept is the convergence rate [73]. On one 

hand, high selection pressure will speed up the convergence rate over the search process, 

which will increase the premature chance and lead to a sub-optimal solution. On the other 

hand, low selection pressure will slow down the convergence rate. It will make the search 

process take a longer time to find the solution or it may not be able to find a solution 

within an expected computation time. There are a number of selection methods. The 

following subsections will briefly introduce several popular selection methods. 

 

3.2.2.1  Proportional Selection 

A typical example of the proportional selection method is the roulette-wheel selection. 

Giving a maximization objective example, the circumference of a wheel is divided into a 

number of parts (the number equals to the population size). The length of each part is 
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proportional to the proportion of the objective function value of an individual with 

respect to the sum of objective function values all individuals [26]. The individual landed 

on when the wheel is spun will be selected for reproduction. This process will be repeated 

until the parent individuals with predefined number are selected.  

Let { )()(
2

)(
1 ,...,, t

N
tt xxx } denote the population of size N at generation t and )( )(t

ixf  

be the fitness of individual )(t
ix , which is corresponding to the actual objective function 

value of )(t
ix  in the roulette-wheel selection. Then, the probability of selecting 

individual i at generation t is given by equation 3.3 [72]: 
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Since the roulette-wheel selection is based on the actual value of the objective 

function of an individual, “super” individuals will have more opportunity to be 

reproduced.  

 

3.2.2.2  Tournament Selection 

In tournament selection, firstly a group of individuals is randomly chosen from the 

ranked population. Then, the individuals in this group (tour) are ordered based on their 

ranks. The best individual in the group will be selected to reproduce. The process will 

stop when the parents with the expected number are chosen. In tournament selection, the 

tournament size influences the selection pressure. Usually, the tournament size, denoted q, 

is set to 2. Then, the best one will be selected to reproduce in this 2-individual tour. 

Increased selection pressure can be provided by simply increasing the value of q, because, 

on average, the individuals selected from a larger group will have better fitness than from 
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a smaller group [73]. 

For the q-tournament selection, the probability of selecting individual i at generation 

t is given by equation 3.4 where the best individual has the lowest index (i) [72]. 
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3.2.2.3  Linear Ranking Selection 

In linear ranking selection, individuals are ordered according to their fitness. Each 

individual is assigned a rank according to the objective function value. For example, the 

worst individual in the population of size N will have the rank value of 1, while the best 

individual gets rank N [74]. The probability of selecting individual i at generation t is 

given by equation 3.5, where max+min=2, 1≤max≤2, 0)( )( ≥t
ixp  for (i=1, 2,…, N), 

and ∑ =
=

N

i
t

ixp
1

)( 1)(  for each generation t [72]. 

 

 )
1

)1)(min)((max
(min1)(

)(
)(

−
−−

+=
N

xrank
N

xp
t

it
i  (eq. 3.5)

 

    The performance comparison of the three selection methods is presented in Tables 

3.1 and 3.2 in terms of solution quality and convergence rate respectively where N is the 

problem size [72]. Table 3.1 shows that the linear ranking selection and the tournament 

selection are superior to proportional selection in terms of average fitness. Table 3.2 

provides the standard deviation of the convergence time of the three selection methods. 

The linear ranking selection has the best convergence rate, which is 3-4 times the 

convergence rate of the tournament selection. The tournament size of 2=q  for the 
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tournament selection and max=1.1 for the linear ranking selection are recommended. 

 

Table 3.1: Comparison of solution quality (greater is better) [72] 

N unit 
Proportional 

selection  
Tournament 

selection  
Linear ranking 

selection  

10 210−×  6.277 ±1.159 6.476 ±1.093 6.459 ±1.095 

20 310−×  8.394 ±1.317 9.368 ±1.018 9.384 ±1.065 

30 310−×  2.608 ±0.291 2.858 ±0.235 2.850 ±0.230 

40 310−×  1.143 ±0.115 1.231 ±0.098 1.229 ±0.095 

50 410−×  5.958 ±0.504 6.416 ±0.496 6.412 ±0.499 

 

Table 3.2: Comparison of convergence time [72] 

N unit 
Proportional 

selection  
Tournament 

selection 
Linear ranking 

selection 

10 510×  2.778 ±0.928 1.510 ±0.924 0.524 ±0.239 

20 510×  8.274 ±3.504  3.953 ±3.850 0.917 ±0.334  

30 510×  13.097±5.434 6.254 ±6.072 1.603 ±0.537  

40 510×  19.443±5.350 8.052 ±8.001 2.456 ±0.529 

50 510×  27.611±9.206 12.713±1.696 4.038 ±0.959 

 

After the parent individual selection, the next task is to reproduce them by applying 

two operators: crossover and mutation.  

 

3.2.3  Crossover 
Integer or binary valued recombination strategies are usually termed as crossover 

methods [26]. Different representations need different forms of crossover. For the UMTS 
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network planning problem, for example, linear crossover will be applied. 

The linear crossover operator can be represented as a binary string/mask lm }1,0{∈ , 

where l  is the string length [10]. For example, a two-point crossover for the string with 

6=l  can be represented as: 1 1 0 0 0 1. Then, one offspring from string a 

( ,1a ,2a ,3a ,4a ,5a 6a ) and string b ( ,1b ,2b ,3b ,4b 65 ,bb ) is calculated using the 

following operation: bmam ⊗⊕⊗ , where m  is the complement of m  and ⊗⊕,  

denote the component-wise addition and multiplication respectively. As a result, the 

offspring will be composed of the following components: ( ,1a ,2a ,3b ,4b ,5b 6a ). 

There are three main linear crossover methods: one-point crossover (1X), m-point 

crossover and the uniform crossover (UX). Davis compared the three crossover methods 

and concluded that the uniform crossover outperforms the other two methods [75]. In 

uniform crossover, by generating the pattern of 0’s and 1’s stochastically (using a 

Bernoulli distribution), we obtain the uniform crossover mask like 1 0 1 0 0 1. Bernoulli 

parameter p can either be defined as p=0.5 or bias one parent by choosing an appropriate 

value of p . 

 

3.2.4  Mutation 
There are two modes for the recombination operator to generate new individuals: 

crossover −− AND mutation or crossover −−OR mutation. Some studies insist that 

−− AND  mode will finally find better solutions, while others believe that the search 

process should always do something, either the crossover or the mutation, but not both 

[10]. 

If −− AND  mode is applied, the next step will be mutation. A mutation operator 

can be generated by using a Bernoulli distribution. An operator against a string such as 0 
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1 0 0 0 1, means that the value of positions 2 and 6 will be changed. For the binary 

encoding scheme, the position value is changed either from 1 to 0 or vice versa. For the 

non-binary encoding, changing a position value will be accompanied with deciding the 

new value. This decision can be either stochastic or sequential. 

There is a crucial parameter for the mutation operator: mutation rate. Some 

practitioners suggest the optimal mutation rate of l/1 , where l is the string length. It 

means to randomly mutate one bit per string. Other researchers believe that this fixed 

mutation rate is too small to be efficient, especially when the GA has converged. Since 

crossover works on combining good individuals at the initial search stage, the role of 

mutation is not apparent. With the progress of the GA search, the crossover operator 

becomes less productive, while mutation begins to take more responsibility for the search 

process. In fact, when the search starts to converge, mutation becomes the main factor for 

the search. This means that the adaptive crossover and the mutation rate will outperform 

the fixed rate for these two operators. Davis [75] proposed the use of the adaptive 

crossover and the mutation operator fitness to improve genetic algorithm search 

efficiency.  

 

3.2.5  New Generation Construction 
Once operators like selection, crossover and mutation are applied to some individuals in 

the population, new offspring can be generated. We have already seen that considerable 

efforts have been spent to obtain a good solution. If we simply replace the whole parent 

population with a newly generated population, good ones in the parent population will be 

thrown away with no opportunity of further reproduction. To avoid this, some studies 

worked on finding an appropriate way to construct the new generation of the population. 

One of them is the steady-state reproduction [75], where the number of offspring to be 

generated is an important parameter in order to have a steady-state reproduction. In the 
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steady-state reproduction, n offspring are generated through the reproduction operations 

(as mentioned above). Then, the generated offspring will replace the worst n individuals 

from the parent population. Instead of generating a full size (N) new population, the 

number of offspring that needs to be generated will be decided first. The steady-state 

reproduction can be done in three steps [75]: 

•  Generate n offspring through reproduction; 

•  Delete the n worst individuals from the parent population; 

•  Evaluate and insert the children into the parent population to construct a new 

generation. 

Typically, practitioners generate and insert just one or two offspring at a time [75]. 

It is important to note that the steady-state reproduction doesn’t really perform better 

than replacing the whole previous generation if the offspring that are going to be 

integrated to the parent population are duplicated to the parent individuals. Davis [75] 

proposed the steady-state without duplication to solve this problem. The child individuals 

that are duplicates with current parent individuals will be discarded, so that the 

population members will always be different from each other. According to Davis’s study, 

the overhead caused by duplication comparison is negligible compared to the time spent 

in optimization. In many optimization problems, there will be a set of complicated 

constraints for the problem. The infeasible children probably are generated from two 

feasible parents. Usually, the infeasible individuals can be ignored to prevent them to be 

inserted to the population.  
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3.2.6  Genetic Algorithm Design 
Generate solution

Evaluate the cost function of the current solution

Rank the population and get fitness

Select parents according to their selection probability

Full-size
of new

offspring?

Steady state to form a new population

Full-size
Population

?

Reached 
max

generations
?

Is the 
solution

feasible and not 
duplicated

?

Final 
solution

yes

yes

yes

yes

no

no

no

no

Crossover and mutation

Is the 
solution

feasible and not 
duplicated

?

Evaluate the cost function of the current solution

yes

no

 

Figure 3.5: Genetic algorithm 
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Figure 3.5 is the proposed genetic algorithm to solve the global planning problem of 

UMTS networks. Individuals in the initial population are randomly generated. Each 

individual can be represented as a one-dimensional array, where each element of the 

array represents the status of a given location (i.e. whether or not a network node is 

installed and which type of node is installed). 

Once an individual is feasible and not duplicated, the next step is to evaluate the 

“quality” of the solution by computing its cost. The latter is obtained by using equations 

3.1 and 3.2. New members/solutions will be generated until the given population size is 

reached. The population size is set to 50.  

The following step is to rank all individuals from the population according to their 

cost function values. The individual with the lowest cost will have the highest rank (such 

as 50) or the highest fitness. Individuals will be selected using the linear ranking selection, 

with max=1.3, as the parents to reproduce. 

Crossover and mutation are both taken as reproduction operators. The uniform 

crossover with the crossover rate of 0.5 is applied without the bias of one parent. Since 

mutation takes more charge of increasing diversity rather than crossover when the 

solution space starts to converge, the mutation rate is set to l/1  (i.e., only one position 

value is changed) for the first three quarters of generations and 2/1 (i.e., half of position 

values are changed) for the remaining generations.  

Steady state reproduction is applied to construct new generations, where the number 

of new generated offspring takes the value of 2. After calculating the cost, new offspring 

are integrated to the parent population to form the next generation. The search process 

will stop when the maximum number of generations (set to10,000) is reached. 

It is important to point out that all the parameters mentioned above were selected 

after several trials. The best results were obtained with these parameters. 
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3.3 Planning Tool Based on Simulated Annealing 
Annealing is a technique from statistical mechanics [76]. In the annealing process, a solid 

material is initially heated over the melting point. At this point, the solid material turns 

into liquid with randomly dispersed particles. Then the material is cooled down. During 

the cooling process, the material structural property highly depends on the cooling rate. If 

the material is cooled properly into low energy states and is controlled to stay in each 

state for certain duration, all particles re-crystallize to a more ordered state. Finally, the 

solid stable state is reached with the most ordered state and the minimum energy. 

However, if the material initial temperature is too low and/or if the material is cooled too 

fast, there could be imperfection in the crystals with higher energy. 

Firstly proposed by Kirkpatrick et al. [8], simulated annealing analogizes the 

annealing process, which is also the reason that this algorithm is called “simulated 

annealing”. Simulated annealing is a powerful algorithmic approach for general 

combinatorial minimization problems. It makes use of the cost function to evaluate the 

solution (state) quality during the solution search process (annealing). The temperature is 

the analogue of the control parameter guiding the solution search to find the global 

optimum. If the temperature decreases too fast, the final solution may be trapped in a 

local optimum with higher energy level. Meanwhile, if the algorithm convergence rate is 

too fast, the final solution may also be trapped in a local optimum. Therefore, gradually 

lowering the temperature in a well-controlled way and accepting temporary deteriorations 

are necessary approaches for finding the final solution that significantly approaches the 

global optimum in polynomial time. The deteriorations are controlled by the 

configuration parameters to guarantee their acceptances. Table 3.3 shows the mapping 

relationship between physical annealing and simulated annealing (cost-oriented) [77]:  
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Table 3.3: Physical annealing vs. simulated annealing [77] 

Physical Annealing Simulated Annealing 

Material States Feasible Solutions 

Material Energy Cost Function Value 

Material State Changes Neighboring Solutions 

Temperature Control Parameter 

Material Frozen State Heuristic Solution 

 

The annealing process starts at a high enough temperature point. Along with the 

cooling phases, the solid will reach the thermal equilibrium at every temperature T, where 

no further state improvement is expected with high probability, characterized by the 

Boltzmann distribution as shown in equation 3.6 [78], where Z(T) is a normalization 

factor, Bk  is the Boltzmann constant and exp(- Tk
E

B
) is the Boltzmann factor. 
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When the well-controlled decreasing temperature approaches zero, the Boltzmann 

distribution will concentrate on the minimum energy state with non-zero probability. 

In 1953, Metropolis et al. [79] proposed Monte Carlo method (also called 

Metropolis algorithm) to generate a solid state sequence, which simulates the solid state 

changing to the thermal equilibrium at a fixed temperature T. Given the solid current state 

(current positions of all particles), a particle is randomly chosen to do a small random 

perturbation. The energy difference ( EΔ ) between the current state and the new state will 

be calculated. If the new state has a lower energy ( EΔ ≤ 0), the current state will change 
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to the new state. Otherwise ( 0≥ΔE ), this acceptance probability of the new state will be 

evaluated by the Boltzmann factor. The evaluation rule is also called Metropolis criterion 

[78]. Following the rule, solid state will finally transit to thermal equilibrium. For the 

whole process, the distribution of state acceptance probability approaches Boltzmann 

distribution [78]. 

Simulated annealing can be treated as a sequence of Metropolis algorithms along 

with decreasing temperature T. Thus, lowing the temperature T in a well-controlled way, 

global optimum can be obtained by randomly sampling the neighborhood and accepting 

the deteriorate solution according to Metropolis criteria. There are three key processes of 

simulated annealing, which affect the quality of the final state: the state initialization, 

state transformation/perturbation and temperature cooling schedule. 

 

3.3.1  State Initialization 
Simulated annealing starts with a random non-optimal initial state/solution. The same 

coding scheme as in genetic algorithm can also be used in simulated annealing. 

Improving the algorithm efficiency is always an interesting topic. Instead of randomly 

generating an initial solution, some studies proposed to start the algorithm with a good 

quality initial solution. An easy way to obtain relatively good solutions is to use a local 

search heuristic. This strategy is called the two-stage simulated annealing (TSSA) [80], 

which is proven to be able to improve the final solution quality, as well as decrease the 

computation time. Please see [80] for more information on TSSA. Obviously, the initial 

solution must be feasible. In this thesis, TSSA is applied by implementing a greedy 

algorithm to obtain a good initial solution. 
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3.3.2  State Transformation/Perturbation 
Based on the initial solution, the SA search process will transform/perturb the current 

state into a new state in its neighborhood. This transformation is also known to be the 

Markov chain transformation, because the current state only depends on the previous 

state. There are two common algorithms used for choosing another state j from the 

neighborhood of the current state i: Metropolis algorithm and Glauber algorithm [81].  

In Metropolis algorithm, if the difference of the cost functions between two states 

( )()( iCjCCij −=Δ ) is smaller than or equal to zero (i.e. a better or same quality solution 

is found), the acceptance probability of state j for the next state is set to 1. On the other 

side, if the difference is greater than zero (i.e. a worse solution is found), then the 

acceptance probability of the new state will be decided according to the Metropolis 

criterion. The latter is a two-step process that works as follows: 

Step 1: Generate a random number ∈[0,1); 

Step 2: If the generated random number is less than )exp(
T
CijΔ

− , then set the 

acceptance probability to 1. Otherwise, reject the solution. 

In summary, the Metropolis algorithm will accept all downhill moves (better 

solutions) and part of uphill moves (worse solutions) according to the Metropolis criteria 

to avoid being trapped into the local optimum. Glauber algorithm, on the other side, 

evaluates the acceptance of all new states (downhill and uphill moves) according to a 

certain decision criteria [81]. As we can see, the Metropolis algorithm is greedier than the 

Glauber algorithm. For more information of Glauber algorithm, please refer to [81]. 

 

3.3.3  Cooling Schedule 
As we can see from the decision criteria, such as Metropolis criteria, the acceptance 
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probability of uphill moves strongly depends on the temperature T. Initially, when T is 

very large, a big percentage of uphill moves will be accepted. This guarantees the 

diversity of the search space. With the decrease of the temperature, the acceptance of the 

uphill moves decreases. Finally, when the temperature decreases to a certain value, no 

uphill moves will be accepted. Through the controlled uphill moves, simulated annealing 

can avoid the solution being trapped in a local optimum and hopefully find the global 

optimum.  

A well-designed cooling schedule is the key for a successful simulated annealing. 

Several aspects need to be defined for the cooling schedule [78]: the initial temperature, 

the decrement rule of temperature, the termination condition, and the number of iterations 

at each temperature (i.e. the length of the Markov chain). 

 

3.3.3.1 Initial Temperature 

Since the Metropolis algorithm will iteratively visit the states/configurations at a given 

fixed temperature with a certain probability, there is a chance to miss the best state. To 

reduce this chance, the initial temperature (T0) has to be set high enough to be able to 

visit almost any neighborhood state. At the same time, it cannot be set too high. 

Otherwise, the search will become completely random and will not act as the defined 

simulated annealing algorithm. Finding an appropriate starting temperature is a crucial 

step. 

Kirkpatrick et al. [8] proposed to choose a high value of 0T  and set the acceptance 

decision criteria of the worse solution as )exp(0 T
C

X ijΔ
−= . Then a number of moves will 

be made. After that, the initial temperature can be calculated according to 0T =
)ln( 1

0
−

Δ

X

Cij
. 
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Define the acceptance ratio X as the ration of the number of accepted moves over the total 

number of moves. Given an empirical fixed value 8.00 =X , double the value of 0T  if 

0XX < . Keep doing this until acceptance ratio 0XX > . 9.00 =X  is suggested by Das 

et al. [81].  

 

3.3.3.2 Decrement Rule of Temperature 

Once we got the initial temperature, the temperature decrement rule needs to be decided. 

According to Das et al. [81], two basic types of cooling schedules are commonly used. 

The first one is called the exponential cooling schedule, which was first proposed by 

Kirkpatrick et al. [8]. It is given by equation 3.7, where α  is a constant and takes the 

value of 0.95 empirically. 

 

kk TT *1 α=+ , (k = 0, 1, 2, …) (eq. 3.7)

  

Some empirical studies said that α  should take the value ranging from 0.8 to 0.99 [8]. 

The higher value of α , the longer the search process. Therefore, a better solution can be 

obtained. Instead of the constant ratio ( kk TT /1+ ) of the temperature, some studies 

proposed a fixed number of decrement steps, say K. Then the calculation of temperature 

kT  at step k (k = 1, …, K) is shown in equation 3.8 [83, 84] :  

 

0*)( T
K

kKTk
−

=  (eq. 3.8)
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3.3.3.3 Termination Condition 

It is usual to set the final temperature to zero as the stop criteria. However, this might 

cause longer execution time of the algorithm. In practice, when the temperature 

approaches zero, the acceptance ratio of worse move usually already reaches zero. 

Therefore, the stop criterion can either be a suitable final temperature or when the 

equilibrium is reached. At this point, the state probability distribution approaches the 

Boltzmann distribution.   

Das et al. [81] suggested that if 
00 *TC

TC ff ∗
 is less than a value, such as 510− , the 

search process should be terminated. fC  and 0C  are respectively the final and initial 

value of the cost function while fT  and 0T  are the final and initial value of temperature 

respectively.  

 

3.3.3.4 Iterations at Each Temperature 

To obtain the thermal equilibrium at each temperature T in the cooling sequence, a 

sufficient amount of transformation/perturbation iterations should be done. A constant 

number of iterations at each temperature is one of the choices. Lundy [85] proposed a 

scheme with one iteration at each temperature T. The temperature is lowered at a very 

slow speed according to equation 3.9, where β  is a suitable small value. 

 

)1( T
TT
β+

=  (eq. 3.9)
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3.3.4  Performance Improvement Strategies 
The simulated annealing gains its popularity because of its ability to solve NP-hard 

combinatorial minimization problems. However, when the temperature becomes low, 

many moves may be rejected before the search process actually moves to the next state. 

This leads to a long computation time, which is an obstacle for the application of 

simulated annealing. Many efforts have been done to overcome this drawback. There are 

mainly two effort directions. The first one focuses on a parallel implementation of 

simulated annealing [5]. The other one works on optimizing the cooling schedule. In this 

thesis, cooling schedule optimization will be used to improve the algorithm efficiency [5, 

86, 87, 88]. 

Various adaptive cooling schedules have been proposed to improve the performance 

of simulated annealing [88]. One significant branch of them is Lam schedule, proposed 

by Lam et al. [5] in 1988. As already mentioned, to finally get the material in the 

minimum energy state, the material has to approach the thermal equilibrium at each 

temperature point, which needs infinite temperature decrement [5] or infinite 

computation time. By applying the Lam schedule to “cool down” the temperature, the 

balance between the final solution quality and the computation time was reached, where 

the temperature changing rate is also called Lam rate. The simulation results showed that 

the computation could be sped up to 24 times of the general schedule. Please refer to [5] 

for details of Lam schedule. 

However, in Lam schedule, the user cannot predict the total number of moves for the 

whole search process and when the process should end. Swartz et al. [89] observed Lam 

schedule results from a large amount of experiments and worked out a default number of 

total moves with a high probability to find the optimum solution as shown in equation 

3.10, where cN  is the number of variables that needs to be solved. 
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=movestotal _ 1500 3/4
cN  (eq. 3.10)

 

 

Swartz also summarized that the acceptance ratio (defined as the ratio of the number 

of accepted moves over the total number of moves) and the new/remaining moves in Lam 

schedule follow the pattern shown in Figure 3.6 [86].  
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Figure 3.6: Pattern of acceptance ratio vs. new moves completed in Lam schedule [86] 

 

Figure 3.6 is, in fact, the Lam rate changing process, where three periods were 

presented. The effect of the Lam schedule was the basis of the Swartz schedule. Without 

changing the effect of Lam schedule, Swartz et al. [89] simplified the temperature update 

schedule in the Lam schedule and obtained almost the same solution quality, as well as 

the same acceptance ratio curve as shown in Figure 3.6. Firstly, the acceptance rate starts 

at almost 100% and decreases in exponential pattern. During this period, about 15% of 

the total moves are finished. Then the acceptance rate stabilizes at about 44%. With this 
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desired value of 0.44, the temperature decreases most rapidly, while satisfying the 

equilibrium condition. About 50% of total moves are done at this period. After that, the 

acceptance rate decreases again following an exponential pattern until the end of the 

whole process.         

Based on Swartz’s research results, Boyan [88], in 1998, further simplified the 

temperature update strategy as shown in equation 3.11, where the cooling rate α  

})999999.0,99999.0,9999.0{( ∈α  was recommended. 

 

iTT α*=+  (eq. 3.11)

 

Boyan schedule keeps using the Metropolis criteria to decide if a worse solution will 

be accepted. In Metropolis criteria, assuming a constant ijCΔ , the smaller the 

temperature T is, the smaller the acceptance probability will be. Since Boyan schedule is 

based on Swartz’s modified Lam schedule, to follow the pattern in Figure 3.6, when 

acceptance rate is greater than Lam rate, i takes the value of +1 (decrease the 

temperature), and -1 (increase temperature) otherwise. For more information about the 

Boyan schedule, please refer to [88]. 
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3.3.5 Simulated Annealing Design  
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Figure 3.7: Simulated annealing algorithm 

 

Figure 3.7 is the designed simulated annealing algorithm for the global UMTS network 

planning problem. Instead of randomly generating an initial solution, TSSA is used to get 
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the search process a better and feasible start point. The initial temperature, 0T , is set to 

be 10 times the highest cost of candidate network nodes, which is 5,000,000. Equations 

3.1 and 3.2 are used to evaluate the solution quality during “annealing”. 

Based on a series of literature review and several experiments, the Boyan schedule is 

used to schedule the temperature cooling process. The total number of moves, proposed 

by Swartz et al., is given by equation 3.10. The decrement rate 999.0=α , together with 

the initial temperature 000,000,50 =T , has been proved to be able to provide the best 

solutions. One iteration at every temperature T is implemented in the search process. 

 

3.4  Planning Tool Based on Tabu Search  
In this section, we briefly present the tabu search algorithm, as proposed in [16], for the 

global planning problem of UMTS networks. The latter will only be used for comparison 

purposes. 

Tabu search is an adaptive search technique [82], using the best improvement local 

search as the basic ingredient. By allowing temporary solution degradation, tabu search 

avoids the search process being trapped into the local optimum. Two mechanisms, the 

short term memory and long term memory, can be applied to keep track of attributes of 

previously visited solutions and guide the tabu search process. The main steps of the tabu 

search algorithm, as proposed in [16], are outlined in Figure 3.8. 
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Figure 3.8: Tabu search algorithm as proposed in [16] 

 

As shown in Figure 3.8, the tabu search algorithm initiates the search process based 

on the local search result, which provides tabu search a good start point. Then, the 

potential solutions in the neighborhood are explored. 100 search iterations in total are 

defined for tabu search. At each iteration, the neighbor with the lowest cost, while 

considering the tabu moves and the aspiration criteria, will be chosen to be the current 

solution. This solution will then be memorized as tabu for a given number of iterations, 

which is randomly generated between 5 and 9.  

A multi-start tabu search is proposed in [16], where the number of the multi-start is 

set to 2. Since the duration of a solution staying in the tabu is randomly determined, the 
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multi-start scheme may help the tabu search find different solutions for each search 

process. 

At each iteration during the overall search process, the current solution will be 

compared with the best solution found so far in order to keep the best solution up to date. 

When the whole search process ends, the best solution over the whole search process will 

be the final output. 

 

3.5  Planning Tool Based on the Cooperative Method  
Amongst the three planning tools presented in the previous sections, an outstanding 

characteristic of the genetic algorithm is that it is a population-based algorithm. Since 

many potential solutions are visited at each generation, it is capable to explore a 

comparatively wide area solution space. On the other side, both simulated annealing and 

tabu search start the search process based on a single initial solution. The simulated 

annealing search process randomly moves to a new solution with respect to the 

acceptance criteria while the tabu search always finds the best solution in the 

neighborhood of the current solution while considering the tabu list. Tabu search is well 

known for its capability of intensive solution search with good performance [17]. To 

improve the performance of the planning tool and make better use of the superiority of 

different meta-heuristics, a cooperation between the tabu search and the genetic algorithm 

is proposed to solve the global planning problem of UMTS networks. Figure 3.9 is the 

implementation flow chart for the cooperative method. 
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Figure 3.9: Cooperative method 

 

In this cooperative method, at first, the genetic algorithm finds a group of solutions, 

using the same process as stated in section 3.2. After that, the tabu search and genetic 

algorithm search the solution space alternatively. A randomly chosen individual from the 

last generation of the genetic algorithm is used as the initial solution for the tabu search. 

The solution obtained from the tabu search is then integrated to the last generation of the 
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genetic algorithm. As a result, a new generation is formed and the genetic algorithm can 

keep searching the solution space based on it. This alternative search process will stop 

when two consecutive cycles of .the algorithms do not have solution quality improvement 

(count=2) or the maximum cycle iteration number (tsgaIter = 3) is reached. A randomly 

chosen solution from the last generation of the genetic algorithm in the cycle will be sent 

to the tabu search to make the last solution search. 

In the TS-GA cycle, the maximum generation number in the genetic algorithm is 

decreased to half of the one in the original genetic algorithm (5,000) and the multi-start is 

set to 1 in tabu search. Each time an algorithm finishes the search process, the final result 

will be compared with the best solution found so far and update it if necessary. Finally 

the best solution of the overall solution search process will be returned. 

In the next chapter, simulation results based on these algorithms will be presented 

and analyzed. 
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Chapter 4             
 

Experiment Design and Result Analysis 
 

In this section, we will firstly outline how the simulations were developed, the simulation 

environment and the data used to run the simulations. Results are then presented and 

followed by a complete analysis. 

 

4.1 Experiment Design 

In our simulation, only the uplink direction is considered. The latter is very important 

when the amount of traffic is balanced between the uplink and the downlink direction. To 

model the traffic, the notion of test point is used. Each TP represents the traffic from 

several co-located mobile users in a given area. The behavior of the signal propagation is 

simulated by the model proposed in [25].  

Three node B types, three RNC types, three MSC types and two SGSN types are 

available for the network design. Their features are respectively presented in Tables 4.1 

to 4.4. Moreover, OC-3 and OC-12 links can be used to connect the node Bs to RNCs. 

DS-3 links are used to connect RNCs to MSCs and gigabit ethernet (GE) links are used to 

connect RNCs to SGSNs (see Table 4.5). The costs of various types of interfaces (ports) 

are also presented in Table 4.5. 
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 Table 4.1: Node B characteristics 

 Type 1 Type 2 Type 3 

Capacity (circuits) 
Capacity (Mbps) 
Number of interfaces 
Sensitivity (dBm) 
Cost ($) 

100 
120 
1 

-90 
20,000 

200 
240 

2 
-100 

30,000 

400 
480 

2 
-110 

50,000 

 

Table 4.2: RNC characteristics 

 Type 1 Type 2 Type 3 

Switch fabric capacity (Mbps) 
Number of node B interfaces 
Number of MSC/SGSN interfaces 
Cost ($) 

2000 
10 
15 

50,000 

5000 
20 
30 

90,000 

10,000 
40 
60 

120,000 

 

Table 4.3: MSC characteristics 

 Type 1 Type 2 Type 3 

Switch fabric capacity (circuits) 
Number of interfaces 
Cost ($) 

100,000 
50 

200,000 

200,000 
100 

350,000 

300,000 
150 

500,000 

 

Table 4.4: SGSN characteristics 

 Type 1 Type 2 

Switch fabric capacity (Mbps) 
Number of interfaces 
Cost ($) 

20,000 
16 

40,000 

40,000 
32 

60,000 
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Table 4.5: Links and interfaces characteristics  

Type Capacity Link cost ($/km) Interface cost ($) 

DS-3  
OC-3 

OC-12 
GE 

2688 circuits 
155Mbps  
622Mbps 

1Gbps 

2,500 
1,500  
4,000 
4,000 

1,500 
2,000 
4,500  
2,000 

 

As mentioned previously, each meta-heuristic has several tunable parameters and 

components, which will eventually have impact on the quality of the final solution. Here 

are the selected parameters and our implementation of those components for the proposed 

meta-heuristics: 

 

Genetic algorithm: 

•  Maximum number of generations: 10,000; 

•  Population size: 50; 

•  Selection: Linear ranking selection with max=1.3; 

•  Crossover: Uniform crossover with crossover rate of 0.5; 

•  Mutation rate: l/1  for the first 3/4 generations and 1/2 for the rest; 

•  Steady-state reproduction with 2 offspring generated. 

 

Simulated Annealing: 

•  Initial solution: Two-stage simulated annealing. A basic local search is used to 

find an initial solution; 

•  Initial temperature: 5,000,000, which is 10 times the value of the highest 

candidate equipment cost; 

•  Fixed number of total moves: 3/41500 cN∗ ; 
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•  Acceptance/rejection criteria: Metropolis criteria; 

•  Cooling schedule: Swartz and Boyan modified Lam schedule, with a cooling 

rate of 0.999. 

 

Cooperative method: 

•  Genetic algorithm with maximum number of generations of 5,000; 

•  Tabu search with 100 iterations and multi-start=1. 

 

These parameters and component realization were selected based on many trials. 

The best results were obtained from those empirical values. 

 

4.2 Result Analysis 
In this section, we present the experiment results to assess the performance of the 

proposed algorithms. Four instances of 42 different problem sizes were randomly 

generated within a 24km  area. Table 4.6 shows the 42 problem sizes. The first column 

in the table represents the problem number. Column 2 shows the number of TPs that need 

to be covered. The next four columns present respectively the number of potential node B 

locations, the number of potential RNC locations, the number of potential MSC locations 

and the number of potential SGSN locations. The 42 problems are divided into six groups. 

Each group has seven different problems and the number of TPs increases from 10 to 40. 

The number of node Bs increases from 10, 20 and 30 for group 1, 2 and 3 respectively, as 

well as for group 4, 5 and 6. The first three groups have 5 potential locations for RNC, 

MSC and SGSN. Finally, the next three problem groups have 10 potential locations for 

these three equipments. 
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Table 4.6: Problem sizes 

 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

Group 6 
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The computing platform used to obtain the results is a Linux PC with a 3 GHz CPU 

and 1024 MB RAM.  

Table 4.7 shows the results for the first instance of the 42 problems, referred to as 

problem set 1 hereafter. The first column shows the problem number which corresponds 

to the first column of Table 4.6. The following two columns contain the results obtained 

by solving the mathematical model as proposed in [14], where CPLEX 10.1.1 is 

employed to find the optimal solutions. These values are used to assess the performance 

of the proposed algorithms. A CPU time limit (TL) of 30 hours is set for CPLEX. This 

means that if CPLEX cannot find the optimal solution within 30 hours, it will return the 

best solution found so far. Also, since the problem is NP-hard, even the memory of the 

computer may be insufficient. In this case, CPLEX will return the best solution found 

before it runs out of memory (OM). Columns 4 and 5 provide, respectively, the best 

results and the corresponding CPU time obtained with the tabu search. Column 6 shows 

the gap (expressed as a percentage) between the solution value obtained with the tabu 

search and the value of the optimal solution. The following three columns show the best 

solutions, the corresponding computation time as well as the gap for the genetic 

algorithm. The next three columns are the results for the simulated annealing algorithm. 

Finally, similar information for the cooperative method is provided in the last three 

columns. The results for the other three instances (problem set 2, 3 and 4) are presented 

in Appendix A1, A2 and A3. 
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Table 4.7: Simulation results (problem set 1)  
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From all four problem sets (168 different problems), 126 problems gained optimal 

solutions by using CPLEX (75%). The tabu search was able to provide the optimal 

solutions for 82 different problems (48.81%). The genetic algorithm found 2 optimal 

solutions (1.19%) and simulated annealing obtained the optima for 11 different problems 

(6.55%). The cooperative method, which combines the tabu search and the genetic 

algorithm, showed the superiority to all three other meta-heuristics. In fact, 63.10% of the 

total problems (106 out of 168) had obtained the optimal solutions.  

The comparison in terms of the solution quality amongst CPLEX, tabu search, 

genetic algorithm, simulated annealing and the cooperative method for problem set 1 is 

provided in Figure 4.1. Please refer to Appendixes B1, B2 and B3 for the solution 

comparison for problem sets 2, 3 and 4. 
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Figure 4.1: Solution comparison (problem set 1) 

 

Figure 4.1 shows six groups of solutions. Using CPLEX solutions as the reference, 

we can say that the four planning tools are able to find solutions that are relatively close 

to the optimal solutions. We can also notice that for each group of problems, solutions of 
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the five planning tools increase with the increase of the TP number. This complies with 

the fact that if more mobile users are present, more equipment will be needed in order to 

cover all the users. 

Figure 4.2 shows a clear graph for the 3rd solution group (problem 15 to 21). 

Solutions from all planning tools increase as the TP number increase from 10 to 40. Table 

4.8 shows the result for problem 18. As we can see, TSGA found the optimal solution. TS 

returns a higher solution than the optimal one, but lower than the GA and SA, which 

return the similar results. In fact, for the 4 problem sets, TSGA shows its superiority over 

the other three planning tools. This can be shown from the statistical comparison in Table 

4.9 
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Figure 4.2: Solution comparison for problem 15 to 21 (problem set 1) 
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Table 4.8: Solution of problem 18 (problem set 1) 

 Problem number 18 (2000_25_30_5_5_5) 

Algorithms CPLEX TS GA SA TSGA 

Cost ($) 449794 463676 489855 489852 449794 

 

Table 4.9 shows the statistical results over the four problem sets. The first three 

columns represent the minimum, the maximum, and the average solution gaps. The 

average solution gaps were computed only if CPLEX was able to find the optimal 

solutions. The last two columns are respectively the standard deviation and confidence 

interval (C. I.) for the average solution gaps. It shows cooperative method has 90 percent 

confidence that the true mean solution gap is within the interval of [0.01%, 0.33%]. 

 

Table 4.9: Solution gap comparison (over four problem sets)  

Algorithms 
Min. gap 

(%) 
Max. gap 

(%) 
Ave. gap 

(%) 
Std. dev. 

(%) 
90-percent C. I. 

(%) 

TS 0.00 9.82 0.71 1.55 0.71± 0.23 

GA 0.00 12.68 3.31 3.52 3.31± 0.53 

SA 0.00 25.61 4.59 4.41 4.59± 0.67 

TSGA 0.00 9.82 0.17 1.06 0.17± 0.16 

 

The comparison in terms of the CPU time amongst CPLEX and the four planning 

tools for problem set 1 is provided in Figure 4.3. Appendixes C1, C2 and C3 are 

corresponding information for problem sets 2, 3 and 4. The statistical comparison of CPU 

time over four problem sets are presented in Table 4.10. 
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Figure 4.3: CPU time comparison (problem set 1) 

 

As we can see from Figure 4.3, the four algorithms can provide relatively good 

solutions in a reasonable amount of time. In fact, the CPU times of four algorithms 

increase at a constant rate with respect to the problem size. We can also notice that most 

problems were solved within 10,000 seconds. Even if CPLEX is faster for small size 

instances, its CPU time is almost increasing exponentially with respect to the problem 

size. It is important to note that a time limit of 30 hours was used for CPLEX. The results 

in Table 4.7 implies that the required CPU times for problems 19, 21, 35, 38, 40, 41 and 

42 may be much longer for CPLEX to find the optimal solution. This behavior is as 

expected since, as mentioned before, the global UMTS network planning problem is 

NP-hard. Finally, the small variation in the CPLEX execution time can be explained by 

the fact that CPLEX is using the branch and bound algorithm.  
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Table 4.10: CPU time comparison (over four problem sets) 

Algorithms 
Min. CPU 

(sec) 
Max. CPU 

(sec) 
Ave. CPU 

(sec) 
Std. dev.  

(sec) 
90-percent C. I. 

(sec) 

TS 12 1415 297 332 297± 50 

GA 53 1376 290 214 290± 32 

SA 9 14765 3060 3063 3060± 464 

TSGA 73 4202 923 864 923± 131 

CPLEX 3 108000 35425 44339 35425± 6711 

 
From the solution gap comparison shown in Table 4.9 and the CPU time comparison 

provided in Table 4.10, we can summarize that the tabu search and the genetic algorithm 

are able to use less CPU time to generate better solutions than simulated annealing. At the 

same time, the cooperative method can provide a significant solution quality 

improvement. In fact, an average gap of 0.17% is obtained which is roughly an 

improvement of 76% over the gap obtained from the tabu search (0.71%). The 

computation time of the new method increases slightly, but stays within an acceptable 

range with 90 percent confidence that the true mean CPU time is within the interval of 

[792, 1054] seconds as shown in Table 4.10.  

The main idea behind these algorithms is to find an acceptable tradeoff between the 

quality of a solution and the computation time required to find the solution. During the 

simulation process, we noticed that, based on the same initial solution, tabu search may 

search different solution space with the hope to find a better solution by increasing the 

number of multi-start. This obviously increases the computation time, however, without 

certainty of working out a better result. Similar for the genetic algorithm, with the 

increase of the total generation number, the solution quality increases. However, after a 

certain number of generations, the rate of solution quality improvement decreases. To 

achieve a small amount of solution quality improvement, the total number of generations 
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needs to be greatly increased, which corresponds to a significant growth of the 

computation time. 

In the cooperative method, the improvement of the solution quality can be explained 

by the meaningful information exchanged between the tabu search and the genetic 

algorithm. Comparing to the pure implementation of each meta-heuristic, the proposed 

cooperative method makes use of the superiority of both the tabu search and the genetic 

algorithm. The genetic algorithm is a population-based algorithm. It is capable to explore 

a wide solution space during the search process. The result from the genetic algorithm 

obviously provides the tabu search a good search basis. Then, the tabu search keeps track 

of this input solution attribute to do an intensive search and find a better result. After that, 

this better result is integrated into the last generation of the genetic algorithm. Based on 

this new formed population, the genetic algorithm will be directed to a more promising 

solution space. This iterative information exchange affects both meta-heuristic search 

process and finally better results can be obtained. The most significant point is that this 

great improvement of the solution quality is not necessarily accompanied with a sharp 

increase of the computation time as its counterparts in the implementation of the 

independent meta-heuristics. Such observations make the cooperative method be the most 

efficient planning tool among those competitors. 

In the real world planning, UMTS networks can be very large. Using CPLEX to 

solve the UMTS network planning problem will be time-consuming. As a result, the 

proposed algorithms are more appropriate in this situation. The new designed cooperative 

method with the best solution quality and reasonable computation time is especially 

recommended for solving the UMTS network planning problem. 

 
 



90 

 
 
 
 
Chapter 5  

 
Conclusions and Future Work 
 

The primary goal of the UMTS network planning is the topology planning. To help 

network operators gain a long term profit, efficient planning tools are necessary in order 

to reach a delicate balance between network investment and performance. Since the 

global UMTS network planning problem has been shown to be NP-hard, approximate 

algorithms (based on meta-heuristics) must be used to find the balance between the final 

solution quality and the computation time. The efficiency of the algorithm is problem 

dependent. An appropriate selection and design of the meta-heuristics is the key for the 

success of a planning tool.  

In this thesis, we used two independent meta-heuristic algorithms (genetic algorithm 

and simulated annealing) and applied them to our specific problem. On top of that, we 

also proposed a cooperative method based on the tabu search and the genetic algorithm. 

These three algorithms aim to solve the global planning problem of UMTS networks. 

More especially, they consider simultaneously the cell, the access network, and the core 

network planning subproblems.  

During the simulation, four instances of 42 different problem sizes were randomly 

generated and solved with the proposed algorithms. In order to assess the performance of 
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those algorithms, we compared the results with the optimal solutions obtained from a 

commercial solver named CPLEX. The results demonstrate the genetic algorithm and the 

simulated annealing are able to find solutions with 90-percent confidence that the true 

mean gap is within the intervals [2.78%, 3.84%] and [3.92%, 5.26%] from the optimal 

solutions respectively. Even if these results are relatively good, they are not better than 

the algorithm based on the tabu search which returns solutions with a mean gap in the 

interval of [0.48%, 0.94%] with 90-percent confidence. However, when combining the 

tabu search and the genetic algorithm in a cooperative manner, average solution gap has 

90-percent confidence to be in the interval of [0.01%. 0.33%] from the optima. 

Comparing to the exact algorithm, the main advantage of these proposed algorithms is the 

speed up in terms of CPU execution time. Therefore, larger instances of the problem can 

be tackled with the new proposals.  

This research work has successfully shown that the proposed algorithms are able to 

find good solutions within reasonable computation time for the global planning problem 

of UMTS networks. Nevertheless, some aspects of it could be further improved. In our 

simulation, the user traffic distribution is randomly generated for this network planning 

project. There will be a certain difference from the real world network planning. 

Furthermore, besides the network infrastructure costs, the operational costs, like 

maintenance, reparation, rental, etc., are also important aspects concerned by the network 

operators. Unfortunately, at this time, our algorithms do not consider these costs. Another 

limitation is that CPLEX is not very efficient for solving medium/large size problems. As 

we saw from the simulation results, several problems were not solved within the time 

limit. As a result, it is difficult to evaluate the quality of the proposed algorithms for 

medium/large size problems since there is no comparison value.  

Some future works of this project may consist of investigating the parallel 

implementation of these meta-heuristics and performance analysis between the parallel 
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and the cooperative implementation. The performance comparison of different planning 

tools can also be made under fair amount of computation time. Another avenue could be 

a comparative study amongst the proposed algorithms for larger size problems. We could 

also implement the algorithms for the downlink direction or even both directions 

simultaneously. Finally, building a network cost model with the consideration of different 

operational costs, and modifying the model to satisfy the network expansion planning 

problem may be potential research directions as well. 
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Appendix A1: Simulation results (problem set 2) 
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Appendix A2: Simulation results (problem set 3)  
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Appendix A3: Simulation results (problem set 4) 
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